950 resultados para Nonlinear waves
Resumo:
When a premixed flame is placed within a duct, acoustic waves induce velocity perturbations at the flame's base. These travel down the flame, distorting its surface and modulating its heat release. This can induce self-sustained thermoacoustic oscillations. Although the phase speed of these perturbations is often assumed to equal the mean flow speed, experiments conducted in other studies and Direct Numerical Simulation (DNS) conducted in this study show that it varies with the acoustic frequency. In this paper, we examine how these variations affect the nonlinear thermoacoustic behaviour. We model the heat release with a nonlinear kinematic G-equation, in which the velocity perturbation is modelled on DNS results. The acoustics are governed by linearised momentum and energy equations. We calculate the flame describing function (FDF) using harmonic forcing at several frequencies and amplitudes. Then we calculate thermoacoustic limit cycles and explain their existence and stability by examining the amplitude-dependence of the gain and phase of the FDF. We find that, when the phase speed equals the mean flow speed, the system has only one stable state. When the phase speed does not equal the mean flow speed, however, the system supports multiple limit cycles because the phase of the FDF changes significantly with oscillation amplitude. This shows that the phase speed of velocity perturbations has a strong influence on the nonlinear thermoacoustic behaviour of ducted premixed flames. (C) 2013 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
Resumo:
To investigate the dynamics of gravity waves in stratified Boussinesq flows, a model is derived that consists of all three-gravity-wave-mode interactions (the GGG model), excluding interactions involving the vortical mode. The GGG model is a natural extension of weak turbulence theory that accounts for exact three-gravity-wave resonances. The model is examined numerically by means of random, large-scale, high-frequency forcing. An immediate observation is a robust growth of the so-called vertically sheared horizontal flow (VSHF). In addition, there is a forward transfer of energy and equilibration of the nonzero-frequency (sometimes called ``fast'') gravity-wave modes. These results show that gravity-wave-mode interactions by themselves are capable of systematic interscale energy transfer in a stratified fluid. Comparing numerical simulations of the GGG model and the full Boussinesq system, for the range of Froude numbers (Fr) considered (0.05 a parts per thousand currency sign Fr a parts per thousand currency sign 1), in both systems the VSHF is hardest to resolve. When adequately resolved, VSHF growth is more vigorous in the GGG model. Furthermore, a VSHF is observed to form in milder stratification scenarios in the GGG model than the full Boussinesq system. Finally, fully three-dimensional nonzero-frequency gravity-wave modes equilibrate in both systems and their scaling with vertical wavenumber follows similar power-laws. The slopes of the power-laws obtained depend on Fr and approach -2 (from above) at Fr = 0.05, which is the strongest stratification that can be properly resolved with our computational resources.
Resumo:
Nonlinear acoustic wave propagation in an infinite rectangular waveguide is investigated. The upper boundary of this waveguide is a nonlinear elastic plate, whereas the lower boundary is rigid. The fluid is assumed to be inviscid with zero mean flow. The focus is restricted to non-planar modes having finite amplitudes. The approximate solution to the acoustic velocity potential of an amplitude modulated pulse is found using the method of multiple scales (MMS) involving both space and time. The calculations are presented up to the third order of the small parameter. It is found that at some frequencies the amplitude modulation is governed by the Nonlinear Schrodinger equation (NLSE). The first objective here is to study the nonlinear term in the NLSE. The sign of the nonlinear term in the NLSE plays a role in determining the stability of the amplitude modulation. Secondly, at other frequencies, the primary pulse interacts with its higher harmonics, as do two or more primary pulses with their resultant higher harmonics. This happens when the phase speeds of the waves match and the objective is to identify the frequencies of such interactions. For both the objectives, asymptotic coupled wavenumber expansions for the linear dispersion relation are required for an intermediate fluid loading. The novelty of this work lies in obtaining the asymptotic expansions and using them for predicting the sign change of the nonlinear term at various frequencies. It is found that when the coupled wavenumbers approach the uncoupled pressure-release wavenumbers, the amplitude modulation is stable. On the other hand, near the rigid-duct wavenumbers, the amplitude modulation is unstable. Also, as a further contribution, these wavenumber expansions are used to identify the frequencies of the higher harmonic interactions. And lastly, the solution for the amplitude modulation derived through the MMS is validated using these asymptotic expansions. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Present paper is the first one in the series devoted to the dynamics of traveling waves emerging in the uncompressed, tri-atomic granular crystals. This work is primarily concerned with the dynamics of one-dimensional periodic granular trimer (tri-atomic) chains in the state of acoustic vacuum. Each unit cell consists of three spherical particles of different masses subject to periodic boundary conditions. Hertzian interaction law governs the mutual interaction of these particles. Under the assumption of zero pre-compression, this interaction is modeled as purely nonlinear, which means the absence of linear force component. The dynamics of such chains is governed by the two system parameters that scale the mass ratios between the particles of the unit cell. Such a system supports two different classes of periodic solutions namely the traveling and standing waves. The primary objective of the present study is the numerical analysis of the bifurcation structure of these solutions with emphasis on the dynamics of traveling waves. In fact, understanding of the bifurcation structure of the traveling wave solutions emerging in the unit-cell granular trimer is rather important and can shed light on the more complex nonlinear wave phenomena emerging in semi-infinite trimer chains. (c) 2016 Elsevier B.V. All rights reserved.
Resumo:
Rossby waves are the most important waves in the atmosphere and ocean, and are parts of a large-scale system in fluid. The theory and observation show that, they satisfy quasi-geostrophic and quasi-static equilibrium approximations. In this paper, solitary Rossby waves induced by linear topography in barotropic fluids with a shear flow are studied. In order to simplify the problem, the topography is taken as a linear function of latitude variable y, then employing a weakly nonlinear method and a perturbation method, a KdV (Korteweg-de Vries) equation describing evolution of the amplitude of solitary Rossby waves induced by linear topography is derived. The results show that the variation of linear topography can induce the solitary Rossby waves in barotropic fluids with a shear flow, and extend the classical geophysical theory of fluid dynamics.
Resumo:
Singular perturbation theory of two-time-scale expansions was developed in inviscid fluids to investigate patternforming, structure of the single surface standing wave, and its evolution with time in a circular cylindrical vessel subject to a vertical oscillation. A nonlinear slowly varying complex amplitude equation, which involves a cubic nonlinear term, an external excitation and the influence of surface tension, was derived from the potential flow equation. Surface tension was introduced by the boundary condition of the free surface in an ideal and incompressible fluid. The results show that when forced frequency is low, the effect of surface tension on the mode selection of surface waves is not important. However, when the forced frequency is high, the surface tension cannot be neglected. This manifests that the function of surface tension is to cause the free surface to return to its equilibrium configuration. In addition, the effect of surface tension seems to make the theoretical results much closer to experimental results.
Resumo:
The nonlinear free surface amplitude equation, which has been derived from the inviscid fluid by solving the potential equation of water waves with a singular perturbation theory in a vertically oscillating rigid circular cylinder, is investigated successively in the fourth-order Runge-Kutta approach with an equivalent time-step. Computational results include the evolution of the amplitude with time, the characteristics of phase plane determined by the real and imaginary parts of the amplitude, the single-mode selection rules of the surface waves in different forced frequencies, contours of free surface displacement and corresponding three-dimensional evolution of surface waves, etc. In addition, the comparison of the surface wave modes is made between theoretical calculations and experimental measurements, and the results are reasonable although there are some differences in the forced frequency.
Resumo:
The motion of a single spherical small bubble due to buoyancy in the ideal fluid with waves is investigated theoretically and experimentally in this article. Assuming that the bubble has no effect on the wave field, equations of a bubble motion are obtained and solved. It is found that the nonlinear effect increases with the increase of the bubble radius and the rising time. The rising time and the motion orbit are given by calculations and experiments. When the radius of a bubble is smaller than 0.5mm and the distance from the free surface is greater than the wave height, the results of the present theory are in close agreement with measurements.
Resumo:
A fifth-order theory for solving the problem of interaction between Stokes waves and exponential profile currents is proposed. The calculated flow fields are compared with measurements. Then the errors caused by the linear superposition method and approximate theory are discussed. It is found that the total wave-current field consists of pure wave, pure current and interaction components. The shear current not only directly changes the flow field, but also indirectly does sx, by changing the wave parameters due to wave-current interaction. The present theory can predict the wave kinematics on shear currents satisfactorily. The linear superposition method may give rise to more than 40% loading error in extreme conditions. When the apparent wave period is used and the Wheeler stretching method is adopted to extrapolate the current, application of the approximate theory is the best.
Resumo:
The dynamics of long slender cylinders undergoing vortex-induced vibrations (VIV) is studied in this work. Long slender cylinders such as risers or tension legs are widely used in the field of ocean engineering. When the sea current flows past a cylinder, it will be excited due to vortex shedding. A three-dimensional time domain model is formulated to describe the response of the cylinder, in which the in-line (IL) and cross-flow (CF) deflections are coupled. The wake dynamics, including in-line and cross-flow vibrations, is represented using a pair of non-linear oscillators distributed along the cylinder. The wake oscillators are coupled to the dynamics of the long cylinder with the acceleration coupling term. A non-linear fluid force model is accounted for to reflect the relative motion of cylinder to current. The model is validated against the published data from a tank experiment with the free span riser. The comparisons show that some aspects due to VIV of long flexible cylinders can be reproduced by the proposed model, such as vibrating frequency, dominant mode number, occurrence and transition of the standing or traveling waves. In the case study, the simulations show that the IL curvature is not smaller than CF curvature, which indicates that both IL and CF vibrations are important for the structural fatigue damage.
Resumo:
Various families of exact solutions to the Einstein and Einstein-Maxwell field equations of General Relativity are treated for situations of sufficient symmetry that only two independent variables arise. The mathematical problem then reduces to consideration of sets of two coupled nonlinear differential equations.
The physical situations in which such equations arise include: a) the external gravitational field of an axisymmetric, uncharged steadily rotating body, b) cylindrical gravitational waves with two degrees of freedom, c) colliding plane gravitational waves, d) the external gravitational and electromagnetic fields of a static, charged axisymmetric body, and e) colliding plane electromagnetic and gravitational waves. Through the introduction of suitable potentials and coordinate transformations, a formalism is presented which treats all these problems simultaneously. These transformations and potentials may be used to generate new solutions to the Einstein-Maxwell equations from solutions to the vacuum Einstein equations, and vice-versa.
The calculus of differential forms is used as a tool for generation of similarity solutions and generalized similarity solutions. It is further used to find the invariance group of the equations; this in turn leads to various finite transformations that give new, physically distinct solutions from old. Some of the above results are then generalized to the case of three independent variables.
Resumo:
The first thesis topic is a perturbation method for resonantly coupled nonlinear oscillators. By successive near-identity transformations of the original equations, one obtains new equations with simple structure that describe the long time evolution of the motion. This technique is related to two-timing in that secular terms are suppressed in the transformation equations. The method has some important advantages. Appropriate time scalings are generated naturally by the method, and don't need to be guessed as in two-timing. Furthermore, by continuing the procedure to higher order, one extends (formally) the time scale of valid approximation. Examples illustrate these claims. Using this method, we investigate resonance in conservative, non-conservative and time dependent problems. Each example is chosen to highlight a certain aspect of the method.
The second thesis topic concerns the coupling of nonlinear chemical oscillators. The first problem is the propagation of chemical waves of an oscillating reaction in a diffusive medium. Using two-timing, we derive a nonlinear equation that determines how spatial variations in the phase of the oscillations evolves in time. This result is the key to understanding the propagation of chemical waves. In particular, we use it to account for certain experimental observations on the Belusov-Zhabotinskii reaction.
Next, we analyse the interaction between a pair of coupled chemical oscillators. This time, we derive an equation for the phase shift, which measures how much the oscillators are out of phase. This result is the key to understanding M. Marek's and I. Stuchl's results on coupled reactor systems. In particular, our model accounts for synchronization and its bifurcation into rhythm splitting.
Finally, we analyse large systems of coupled chemical oscillators. Using a continuum approximation, we demonstrate mechanisms that cause auto-synchronization in such systems.
Resumo:
Some problems of edge waves and standing waves on beaches are examined.
The nonlinear interaction of a wave normally incident on a sloping beach with a subharmonic edge wave is studied. A two-timing expansion is used in the full nonlinear theory to obtain the modulation equations which describe the evolution of the waves. It is shown how large amplitude edge waves are produced; and the results of the theory are compared with some recent laboratory experiments.
Traveling edge waves are considered in two situations. First, the full linear theory is examined to find the finite depth effect on the edge waves produced by a moving pressure disturbance. In the second situation, a Stokes' expansion is used to discuss the nonlinear effects in shallow water edge waves traveling over a bottom of arbitrary shape. The results are compared with the ones of the full theory for a uniformly sloping bottom.
The finite amplitude effects for waves incident on a sloping beach, with perfect reflection, are considered. A Stokes' expansion is used in the full nonlinear theory to find the corrections to the dispersion relation for the cases of normal and oblique incidence.
Finally, an abstract formulation of the linear water waves problem is given in terms of a self adjoint but nonlocal operator. The appropriate spectral representations are developed for two particular cases.
Resumo:
Two separate problems are discussed: axisymmetric equilibrium configurations of a circular membrane under pressure and subject to thrust along its edge, and the buckling of a circular cylindrical shell.
An ordinary differential equation governing the circular membrane is imbedded in a family of n-dimensional nonlinear equations. Phase plane methods are used to examine the number of solutions corresponding to a parameter which generalizes the thrust, as well as other parameters determining the shape of the nonlinearity and the undeformed shape of the membrane. It is found that in any number of dimensions there exists a value of the generalized thrust for which a countable infinity of solutions exist if some of the remaining parameters are made sufficiently large. Criteria describing the number of solutions in other cases are also given.
Donnell-type equations are used to model a circular cylindrical shell. The static problem of bifurcation of buckled modes from Poisson expansion is analyzed using an iteration scheme and pertubation methods. Analysis shows that although buckling loads are usually simple eigenvalues, they may have arbitrarily large but finite multiplicity when the ratio of the shell's length and circumference is rational. A numerical study of the critical buckling load for simple eigenvalues indicates that the number of waves along the axis of the deformed shell is roughly proportional to the length of the shell, suggesting the possibility of a "characteristic length." Further numerical work indicates that initial post-buckling curves are typically steep, although the load may increase or decrease. It is shown that either a sheet of solutions or two distinct branches bifurcate from a double eigenvalue. Furthermore, a shell may be subject to a uniform torque, even though one is not prescribed at the ends of the shell, through the interaction of two modes with the same number of circumferential waves. Finally, multiple time scale techniques are used to study the dynamic buckling of a rectangular plate as well as a circular cylindrical shell; transition to a new steady state amplitude determined by the nonlinearity is shown. The importance of damping in determining equilibrium configurations independent of initial conditions is illustrated.
Resumo:
The nonlinear partial differential equations for dispersive waves have special solutions representing uniform wavetrains. An expansion procedure is developed for slowly varying wavetrains, in which full nonlinearity is retained but in which the scale of the nonuniformity introduces a small parameter. The first order results agree with the results that Whitham obtained by averaging methods. The perturbation method provides a detailed description and deeper understanding, as well as a consistent development to higher approximations. This method for treating partial differential equations is analogous to the "multiple time scale" methods for ordinary differential equations in nonlinear vibration theory. It may also be regarded as a generalization of geometrical optics to nonlinear problems.
To apply the expansion method to the classical water wave problem, it is crucial to find an appropriate variational principle. It was found in the present investigation that a Lagrangian function equal to the pressure yields the full set of equations of motion for the problem. After this result is derived, the Lagrangian is compared with the more usual expression formed from kinetic minus potential energy. The water wave problem is then examined by means of the expansion procedure.