772 resultados para Nonlinear optical effects


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article we present the nonlinear optical properties of ZnO–TiO2–SiO2 nanocomposites prepared by colloidal chemical synthesis. Nonlinear optical response of these samples is studied using nanosecond laser pulses at an off-resonance wavelength. The nonlinearity of the silica colloid is low and its nonlinear response can be improved by making composites with ZnO and TiO2. These nanocomposites show self-defocusing nonlinearity and good nonlinear absorption behaviour. The nonlinear refractive index and the nonlinear absorption increases with increasing ZnO volume fraction. The observed nonlinear absorption is explained by two photon absorption followed by weak free carrier absorption and nonlinear scattering. ZnO–TiO2–SiO2 is a potential nanocomposite material for the development of nonlinear optical devices with a relatively small limiting threshold.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this Letter we present the spectral and nonlinear optical properties of ZnO–Ag nanocomposites prepared by colloidal chemical synthesis. Obvious enhancement of ultraviolet (UV) emission of the samples is observed and the strongest UV emission is over three times than that of pure ZnO. These nanocomposites show self-defocusing nonlinearity and good nonlinear absorption behaviour which increases with increasing Ag volume fraction. The observed nonlinear absorption is explained through two photon absorption followed by free carrier absorption. ZnO–Ag is a potential nanocomposite material for the UV light emission and for the development of nonlinear optical devices with a relatively small limiting threshold.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work, we report the third order nonlinear optical properties of ZnO thin films deposited using self assembly, sol gel process as well as pulsed laser ablation by z scan technique. ZnO thin films clearly exhibit a negative nonlinear index of refraction at 532 nm and the observed nonlinear refraction is attributed to two photon absorption followed by free carrier absorption. Although the absolute nonlinear values for these films are comparable, there is a change in the sign of the absorptive nonlinearity of the films. The films developed by dip coating and pulsed laser ablation exhibit reverse saturable absorption whereas the self assembled film exhibits saturable absorption. These different nonlinear characteristics in the self assembled films can be mainly attributed to the saturation of linear absorption of the ZnO defect states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the third-order nonlinearity in ZnO nanocolloids with particle sizes in the range 6-18 nm by the z-scan technique. The third-order optical susceptibility χ(3) increases with increasing particle size (R) within the range of our investigations. In the weak confinement regime, an R2 dependence of χ(3) is obtained for ZnO nanocolloids. The optical limiting response is also studied against particle size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wavelength dependence of saturable absorption (SA) and reverse saturable absorption (RSA) of zinc phthalocyanine was studied using 10 Hz, 8 ns pulses from a tunable laser, in the wavelength range of 520–686 nm, which includes the rising edge of the Q band in the electronic absorption spectrum. The nonlinear response is wavelength dependent and switching from RSA to SA has been observed as the excitation wavelength changes from the low absorption window region to higher absorption regime near the Q band. The SA again changes back to RSA when we further move over to the infrared region. Values of the imaginary part of third order susceptibility are calculated for various wavelengths in this range. This study is important in identifying the spectral range over which the nonlinear material acts as RSA based optical limiter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonlinear optical absorption in silver nanosol was investigated at selected wavelengths (456 nm, 477 nm and 532 nm) using open aperture Z-scan technique. It was observed that nature of nonlinear absorption is sensitively dependent on input fluence as well as on excitation wavelength. Besides, the present sample was found to exhibit reverse saturable absorption (RSA) and saturable absorption (SA) at these wavelengths depending on excitation fluence. RSA is attributed to enhanced absorption resulting from photochemical changes. SA observed for fluence values lower and higher than those corresponding to RSA are, respectively, attributed to plasmon bleach and saturation of RSA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the spectral and nonlinear optical properties of ZnO-SiO2 nanocomposites prepared by colloidal chemical synthesis. Obvious enhancement of ultraviolet (UV) emission of the samples is observed, and the strongest UV emission of a typical ZnO-SiO2 nanocomposite is over three times stronger than that of pure ZnO. The nonlinearity of the silica colloid is low, and its nonlinear response can be improved by making composites with ZnO. These nanocomposites show self-defocusing nonlinearity and good nonlinear absorption behavior. The observed nonlinear absorption is explained through two photon absorption followed by weak free carrier absorption and nonlinear scattering. The nonlinear refractive index and the nonlinear absorption increase with increasing ZnO volume fraction and can be attributed to the enhancement of exciton oscillator strength. ZnO-SiO2 is a potential nanocomposite material for the UV light emission and for the development of nonlinear optical devices with a relatively small limiting threshold.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we present the spectral and nonlinear optical properties of ZnOCu nanocomposites prepared by colloidal chemical synthesis. The emission consisted of two peaks. The 385-nm ultraviolet (UV) peak is attributed to ZnO and the 550-nm visible peak is attributed to Cu nanocolloids. Obvious enhancement of UV and visible emission of the samples is observed and the strongest UV emission of a typical ZnOCu nanocomposite is over three times stronger than that of pure ZnO. Cu acts as a sensitizer and the enhancement of UV emission are caused by excitons formed at the interface between Cu and ZnO. As the volume fraction of Cu increases beyond a particular value, the intensity of the UV peak decreases while the intensity of the visible peak increases, and the strongest visible emission of a typical ZnOCu nanocomposite is over ten times stronger than that of pure Cu. The emission mechanism is discussed. Nonlinear optical response of these samples is studied using nanosecond laser pulses from a tunable laser in the wavelength range of 450650 nm, which includes the surface plasmon absorption (SPA) band. The nonlinear response is wavelength dependent and switching from reverse saturable absorption (RSA) to saturable absorption (SA) has been observed for Cu nanocolloids as the excitation wavelength changes from the low absorption window region to higher absorption regime near the SPA band. However, ZnO colloids and ZnOCu nanocomposites exhibit induced absorption at this wavelength. Such a changeover in the sign of the nonlinearity of ZnOCu nanocomposites, with respect to Cu nanocolloids, is related to the interplay of plasmon band bleach and optical limiting mechanisms. The SA again changes back to RSA when we move over to the infrared region. The ZnOCu nanocomposites show self-defocusing nonlinearity and good nonlinear absorption behavior. The nonlinear refractive index and the nonlinear absorption increases with increasing Cu volume fraction at 532 nm. The observed nonlinear absorption is explained through two-photon absorption followed by weak free-carrier absorption and interband absorption mechanisms. This study is important in identifying the spectral range and composition over which the nonlinear material acts as a RSA-based optical limiter. ZnOCu is a potential nanocomposite material for the light emission and for the development of nonlinear optical devices with a relatively small limiting threshold.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wavelength dependence of saturable absorption (SA) and reverse saturable absorption (RSA) of zinc phthalocyanine was studied using 10 Hz, 8 ns pulses from a tunable laser, in the wavelength range of 520–686 nm, which includes the rising edge of the Q band in the electronic absorption spectrum. The nonlinear response is wavelength dependent and switching from RSA to SA has been observed as the excitation wavelength changes from the low absorption window region to higher absorption regime near the Q band. The SA again changes back to RSA when we further move over to the infrared region. Values of the imaginary part of third order susceptibility are calculated for various wavelengths in this range. This study is important in identifying the spectral range over which the nonlinear material acts as RSA based optical limiter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Present thesis has discussed the design and synthesis of polymers suitable for nonlinear optics. Most of the molecules that were studied have shown good nonlinear optical activity. The second order nonlinear optical activity of the polymers was measured experimentally by Kurtz and Perry powder technique. The thesis comprises of eight chapters.The theory of NLO phenomenon and a review about the various nonlinear optical polymers has been discussed in chapter 1. The review has provided a survey of NLO active polymeric materials with a general introduction, which included the principles and the origin of nonlinear optics, and has given emphasis to polymeric materials for nonlinear optics, including guest-host systems, side chain polymers, main chain polymers, crosslinked polymers, chiral polymers etc.Chapter 2 has discussed the stability of the metal incorporated tetrapyrrole molecules, porphyrin, chlorin and bacteriochlorin.Chapter 3 has provided the NLO properties of certain organic molecules by computational tools. The chapter is divided into four parts. The first part has described the nonlinear optical properties of chromophore (D-n-A) and bichromophore (D-n-A-A-n-D) systems, which were separated by methylene spacer, by making use of DPT and semiempirical calculations.Chapter 4: A series of polyurethanes was prepared from cardanol, a renewable resource and a waste of the cashew industry by previously designed bifunctional and multifunctional polymers using quantum theoretical approach.Chapter 5: A series of chiral polyurethanes with main chain bis azo diol groups in the polymer backbone was designed and NLO activity was predicted by ZlNDO/ CV methods.In Chapter 7, polyurethanes were first designed by computational methods and the NLO properties were predicted by correction vector method. The designed bifunctional and multifunctional polyurethanes were synthesized by varying the chiral-achiral diol compositions

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonlinear optics has emerged as a new area of physics , following the development of various types of lasers. A number of advancements , both theoretical and experimental . have been made in the past two decades . by scientists al1 over the world. However , onl y few scientists have attempted to study the experimental aspects of nonlinear optical phenomena i n I ndian laboratories. This thesis is the report of an attempt made in this direction. The thesis contains the details of the several investigations which the author has carried out in the past few years, on optical phase conjugation (OPC) and continuous wave CCVD second harmonic generation CSHG). OPC is a new branch of nonlinear optics, developed only in the past decade. The author has done a few experiments on low power OPC in dye molecules held in solid matrices, by making use of a degenerate four wave mixing CDFWND scheme. These samples have been characterised by studies on their absorption-spectra. fluorescence spectra. triplet lifetimes and saturation intensities. Phase conjugation efficiencies with r espect to the various parameters have been i nvesti gated . DFWM scheme was also employed i n achievi ng phase conjugation of a br oadband laser C Nd: G1ass 3 using a dye solution as the nonlinear medium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic crystals possess extremely large optical nonlinearity compared to inorganic crystals. Also organic compounds have the amenability for synthesis and scope for introducing desirable characteristics by inclusions. A wide variety of organic materials having electron donor and acceptor groups, generate high order of nonlinearity. In the present work, a new nonlinear optical crystal, L-citrulline oxalate (LCO) based on the aminoacid L-citrulline was grown using slow evaporation technique. Structural characterization was carried out by single crystal XRD. It crystallizes in the noncentrosymmetric, orthorhombic structure with space group P21 P21 P21. Functional groups present in the sample were identified by Fourier transform infra red (FTIR) and FT-Raman spectral analysis. On studying the FTIR and Raman spectra of the precursors L-citrulline and oxalic acid, used for growing L-citrulline oxalate crystal, it is found that the significant peaks of the precursors are present in the spectra of the L-citrulline oxalate crystal . This observation along with the presence of NH3 + group in the spectra of L-citrulline oxalate, confirms the formation of the charge transfer complex

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work emphasizes the use of chirality as an efficient tool to synthesize new types of second order nonlinear materials. Second harmonic generation efficiency (SHG) is used as a measure of second order nonlinear response. Nonlinear optical properties of polymers have been studied theoretically and experimentally. Polymers were designed theoretically by ab initio and semiempirical calculations. All the polymeric systems have been synthesized by condensation polymerization. Second harmonic generation efficiency of the synthesized systems has been measured experimentally by Kurtz and Perry powder method

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In general, linear- optic, thermo- optic and nonlinear- optical studies on CdSe QDs based nano uids and their special applications in solar cells and random lasers have been studied in this thesis. Photo acous- tic and thermal lens studies are the two characterization methods used for thermo- optic studies whereas Z- scan method is used for nonlinear- optical charecterization. In all these cases we have selected CdSe QDs based nano uid as potential photonic material and studied the e ect of metal NPs on its properties. Linear optical studies on these materials have been done using vari- ous characterization methods and photo induced studies is one of them. Thermal lens studies on these materials give information about heat transport properties of these materials and their suitability for applica- tions such as coolant and insulators. Photo acoustic studies shows the e ect of light on the absorption energy levels of the materials. We have also observed that these materials can be used as optical limiters in the eld of nonlinear optics. Special applications of these materials have been studied in the eld of solar cell such as QDSSCs, where CdSe QDs act as the sensitizing materials for light harvesting. Random lasers have many applications in the eld of laser technology, in which CdSe QDs act as scattering media for the gain.