960 resultados para Noisy 3D data
Resumo:
Distributed Brillouin sensing of strain and temperature works by making spatially resolved measurements of the position of the measurand-dependent extremum of the resonance curve associated with the scattering process in the weakly nonlinear regime. Typically, measurements of backscattered Stokes intensity (the dependent variable) are made at a number of predetermined fixed frequencies covering the design measurand range of the apparatus and combined to yield an estimate of the position of the extremum. The measurand can then be found because its relationship to the position of the extremum is assumed known. We present analytical expressions relating the relative error in the extremum position to experimental errors in the dependent variable. This is done for two cases: (i) a simple non-parametric estimate of the mean based on moments and (ii) the case in which a least squares technique is used to fit a Lorentzian to the data. The question of statistical bias in the estimates is discussed and in the second case we go further and present for the first time a general method by which the probability density function (PDF) of errors in the fitted parameters can be obtained in closed form in terms of the PDFs of the errors in the noisy data.
Resumo:
Contrast sensitivity improves with the area of a sine-wave grating, but why? Here we assess this phenomenon against contemporary models involving spatial summation, probability summation, uncertainty, and stochastic noise. Using a two-interval forced-choice procedure we measured contrast sensitivity for circular patches of sine-wave gratings with various diameters that were blocked or interleaved across trials to produce low and high extrinsic uncertainty, respectively. Summation curves were steep initially, becoming shallower thereafter. For the smaller stimuli, sensitivity was slightly worse for the interleaved design than for the blocked design. Neither area nor blocking affected the slope of the psychometric function. We derived model predictions for noisy mechanisms and extrinsic uncertainty that was either low or high. The contrast transducer was either linear (c1.0) or nonlinear (c2.0), and pooling was either linear or a MAX operation. There was either no intrinsic uncertainty, or it was fixed or proportional to stimulus size. Of these 10 canonical models, only the nonlinear transducer with linear pooling (the noisy energy model) described the main forms of the data for both experimental designs. We also show how a cross-correlator can be modified to fit our results and provide a contemporary presentation of the relation between summation and the slope of the psychometric function.
Resumo:
Distributed Brillouin sensing of strain and temperature works by making spatially resolved measurements of the position of the measurand-dependent extremum of the resonance curve associated with the scattering process in the weakly nonlinear regime. Typically, measurements of backscattered Stokes intensity (the dependent variable) are made at a number of predetermined fixed frequencies covering the design measurand range of the apparatus and combined to yield an estimate of the position of the extremum. The measurand can then be found because its relationship to the position of the extremum is assumed known. We present analytical expressions relating the relative error in the extremum position to experimental errors in the dependent variable. This is done for two cases: (i) a simple non-parametric estimate of the mean based on moments and (ii) the case in which a least squares technique is used to fit a Lorentzian to the data. The question of statistical bias in the estimates is discussed and in the second case we go further and present for the first time a general method by which the probability density function (PDF) of errors in the fitted parameters can be obtained in closed form in terms of the PDFs of the errors in the noisy data.
3D Surveying and Data Management towards the Realization of a Knowledge System for Cultural Heritage
Resumo:
The research activities involved the application of the Geomatic techniques in the Cultural Heritage field, following the development of two themes: Firstly, the application of high precision surveying techniques for the restoration and interpretation of relevant monuments and archaeological finds. The main case regards the activities for the generation of a high-fidelity 3D model of the Fountain of Neptune in Bologna. In this work, aimed to the restoration of the manufacture, both the geometrical and radiometrical aspects were crucial. The final product was the base of a 3D information system representing a shared tool where the different figures involved in the restoration activities shared their contribution in a multidisciplinary approach. Secondly, the arrangement of 3D databases for a Building Information Modeling (BIM) approach, in a process which involves the generation and management of digital representations of physical and functional characteristics of historical buildings, towards a so-called Historical Building Information Model (HBIM). A first application was conducted for the San Michele in Acerboli’s church in Santarcangelo di Romagna. The survey was performed by the integration of the classical and modern Geomatic techniques and the point cloud representing the church was used for the development of a HBIM model, where the relevant information connected to the building could be stored and georeferenced. A second application regards the domus of Obellio Firmo in Pompeii, surveyed by the integration of the classical and modern Geomatic techniques. An historical analysis permitted the definitions of phases and the organization of a database of materials and constructive elements. The goal is the obtaining of a federate model able to manage the different aspects: documental, analytic and reconstructive ones.
Resumo:
The aim of this novel experimental study is to investigate the behaviour of a 2m x 2m model of a masonry groin vault, which is built by the assembly of blocks made of a 3D-printed plastic skin filled with mortar. The choice of the groin vault is due to the large presence of this vulnerable roofing system in the historical heritage. Experimental tests on the shaking table are carried out to explore the vault response on two support boundary conditions, involving four lateral confinement modes. The data processing of markers displacement has allowed to examine the collapse mechanisms of the vault, based on the arches deformed shapes. There then follows a numerical evaluation, to provide the orders of magnitude of the displacements associated to the previous mechanisms. Given that these displacements are related to the arches shortening and elongation, the last objective is the definition of a critical elongation between two diagonal bricks and consequently of a diagonal portion. This study aims to continue the previous work and to take another step forward in the research of ground motion effects on masonry structures.
Resumo:
Noise is constant presence in measurements. Its origin is related to the microscopic properties of matter. Since the seminal work of Brown in 1828, the study of stochastic processes has gained an increasing interest with the development of new mathematical and analytical tools. In the last decades, the central role that noise plays in chemical and physiological processes has become recognized. The dual role of noise as nuisance/resource pushes towards the development of new decomposition techniques that divide a signal into its deterministic and stochastic components. In this thesis I show how methods based on Singular Spectrum Analysis have the right properties to fulfil the previously mentioned requirement. During my work I applied SSA to different signals of interest in chemistry: I developed a novel iterative procedure for the denoising of powder X-ray diffractograms; I “denoised” bi-dimensional images from experiments of electrochemiluminescence imaging of micro-beads obtaining new insight on ECL mechanism. I also used Principal Component Analysis to investigate the relationship between brain electrophysiological signals and voice emission.
Resumo:
The 3D flow around a circular cylinder free to oscillate transversely to the free stream was simulated using Computational Fluid Dynamics (CFD) and the Spalart-Allmaras Detached Eddy Simulation (DES) turbulence model for a Reynolds number Re = 10(4). Simulations were carried out for a small mass-damping parameter m*zeta = 0.00858, where m* = 3.3 and zeta = 0.0026. We found good agreement between the numerical results and experimental data. The simulations predicted the high observed amplitudes of the upper branch of vortex-induced vibrations for low mass-damping parameters.
Resumo:
Data mining is the process to identify valid, implicit, previously unknown, potentially useful and understandable information from large databases. It is an important step in the process of knowledge discovery in databases, (Olaru & Wehenkel, 1999). In a data mining process, input data can be structured, seme-structured, or unstructured. Data can be in text, categorical or numerical values. One of the important characteristics of data mining is its ability to deal data with large volume, distributed, time variant, noisy, and high dimensionality. A large number of data mining algorithms have been developed for different applications. For example, association rules mining can be useful for market basket problems, clustering algorithms can be used to discover trends in unsupervised learning problems, classification algorithms can be applied in decision-making problems, and sequential and time series mining algorithms can be used in predicting events, fault detection, and other supervised learning problems (Vapnik, 1999). Classification is among the most important tasks in the data mining, particularly for data mining applications into engineering fields. Together with regression, classification is mainly for predictive modelling. So far, there have been a number of classification algorithms in practice. According to (Sebastiani, 2002), the main classification algorithms can be categorized as: decision tree and rule based approach such as C4.5 (Quinlan, 1996); probability methods such as Bayesian classifier (Lewis, 1998); on-line methods such as Winnow (Littlestone, 1988) and CVFDT (Hulten 2001), neural networks methods (Rumelhart, Hinton & Wiliams, 1986); example-based methods such as k-nearest neighbors (Duda & Hart, 1973), and SVM (Cortes & Vapnik, 1995). Other important techniques for classification tasks include Associative Classification (Liu et al, 1998) and Ensemble Classification (Tumer, 1996).
Resumo:
An automated method for extracting brain volumes from three commonly acquired three-dimensional (3D) MR images (proton density, T1 weighted, and T2-weighted) of the human head is described. The procedure is divided into four levels: preprocessing, segmentation, scalp removal, and postprocessing. A user-provided reference point is the sole operator-dependent input required, The method's parameters were first optimized and then fixed and applied to 30 repeat data sets from 15 normal older adult subjects to investigate its reproducibility. Percent differences between total brain volumes (TBVs) for the subjects' repeated data sets ranged from .5% to 2.2%. We conclude that the method is both robust and reproducible and has the potential for wide application.
Resumo:
P>Aim To evaluate by 3D profilometry and scanning electron microscopy (SEM), the marginal adaptation of mineral trioxide aggregate (MTA) and Sealer 26 placed in root-end cavities with direct vision or under an optical microscope. Methodology The root ends of 52 root filled canine teeth were filled with MTA or Sealer 26 under direct vision or optical microscope (n = 13). In each group, eight specimens were analysed by profilometry for measurement of the area and depth of gaps. In the other five specimens, gap area was measured using SEM to verify marginal adaptation and surface characteristic. Data were analysed by parametric (anova and Tukey) and non-parametric (Kruskal-Wallis and Dunn) tests. Results The assessment of the adaptation of both materials to dentine was not influenced by the mode of visualization, which was confirmed by both profilometry and SEM observations. The voids measured with profilometry for Sealer 26 under direct vision were significantly wider and deeper than those for MTA under direct vision (P < 0.05). In SEM, significantly larger gap areas were observed with Sealer 26 (P < 0.05). Conclusion Root-end cavities filled with MTA had smaller gaps and better marginal adaptation than Sealer 26.
Resumo:
In the last years, it has become increasingly clear that neurodegenerative diseases involve protein aggregation, a process often used as disease progression readout and to develop therapeutic strategies. This work presents an image processing tool to automatic segment, classify and quantify these aggregates and the whole 3D body of the nematode Caenorhabditis Elegans. A total of 150 data set images, containing different slices, were captured with a confocal microscope from animals of distinct genetic conditions. Because of the animals’ transparency, most of the slices pixels appeared dark, hampering their body volume direct reconstruction. Therefore, for each data set, all slices were stacked in one single 2D image in order to determine a volume approximation. The gradient of this image was input to an anisotropic diffusion algorithm that uses the Tukey’s biweight as edge-stopping function. The image histogram median of this outcome was used to dynamically determine a thresholding level, which allows the determination of a smoothed exterior contour of the worm and the medial axis of the worm body from thinning its skeleton. Based on this exterior contour diameter and the medial animal axis, random 3D points were then calculated to produce a volume mesh approximation. The protein aggregations were subsequently segmented based on an iso-value and blended with the resulting volume mesh. The results obtained were consistent with qualitative observations in literature, allowing non-biased, reliable and high throughput protein aggregates quantification. This may lead to a significant improvement on neurodegenerative diseases treatment planning and interventions prevention
Resumo:
Pectus Carinatum (PC) is a chest deformity consisting on the anterior protrusion of the sternum and adjacent costal cartilages. Non-operative corrections, such as the orthotic compression brace, require previous information of the patient chest surface, to improve the overall brace fit. This paper focuses on the validation of the Kinect scanner for the modelling of an orthotic compression brace for the correction of Pectus Carinatum. To this extent, a phantom chest wall surface was acquired using two scanner systems – Kinect and Polhemus FastSCAN – and compared through CT. The results show a RMS error of 3.25mm between the CT data and the surface mesh from the Kinect sensor and 1.5mm from the FastSCAN sensor
Resumo:
Pectus Carinatum (PC) is a chest deformity consisting on the anterior protrusion of the sternum and adjacent costal cartilages. Non-operative corrections, such as the orthotic compression brace, require previous information of the patient chest surface, to improve the overall brace fit. This paper focuses on the validation of the Kinect scanner for the modelling of an orthotic compression brace for the correction of Pectus Carinatum. To this extent, a phantom chest wall surface was acquired using two scanner systems – Kinect and Polhemus FastSCAN – and compared through CT. The results show a RMS error of 3.25mm between the CT data and the surface mesh from the Kinect sensor and 1.5mm from the FastSCAN sensor.
Resumo:
A great number of low-temperature geothermal fields occur in Northern-Portugal related to fractured rocks. The most important superficial manifestations of these hydrothermal systems appear in pull-apart tectonic basins and are strongly conditioned by the orientation of the main fault systems in the region. This work presents the interpretation of gravity gradient maps and 3D inversion model produced from a regional gravity survey. The horizontal gradients reveal a complex fault system. The obtained 3D model of density contrast puts into evidence the main fault zone in the region and the depth distribution of the granitic bodies. Their relationship with the hydrothermal systems supports the conceptual models elaborated from hydrochemical and isotopic water analyses. This work emphasizes the importance of the role of the gravity method and analysis to better understand the connection between hydrothermal systems and the fractured rock pattern and surrounding geology. (c) 2013 Elsevier B.V. All rights reserved.
Resumo:
In this work, we present a neural network (NN) based method designed for 3D rigid-body registration of FMRI time series, which relies on a limited number of Fourier coefficients of the images to be aligned. These coefficients, which are comprised in a small cubic neighborhood located at the first octant of a 3D Fourier space (including the DC component), are then fed into six NN during the learning stage. Each NN yields the estimates of a registration parameter. The proposed method was assessed for 3D rigid-body transformations, using DC neighborhoods of different sizes. The mean absolute registration errors are of approximately 0.030 mm in translations and 0.030 deg in rotations, for the typical motion amplitudes encountered in FMRI studies. The construction of the training set and the learning stage are fast requiring, respectively, 90 s and 1 to 12 s, depending on the number of input and hidden units of the NN. We believe that NN-based approaches to the problem of FMRI registration can be of great interest in the future. For instance, NN relying on limited K-space data (possibly in navigation echoes) can be a valid solution to the problem of prospective (in frame) FMRI registration.