987 resultados para Nitrogen Isotopes
Resumo:
Concentrations and d34S and d13C values were determined on SO4, HCO3, CO2, and CH4 in interstitial water and gas samples from the uppermost 400 m of sediment on the Blake Outer Ridge. These measurements provide the basis for detailed interpretation of diagenetic processes associated with anaerobic respiration of electrons generated by organic- matter decomposition. The sediments are anaerobic at very shallow depths (<1 m) below the seafloor. Sulfate reduction is confined to the uppermost 15 m of sediment and results in a significant outflux of oxidized carbon from the sediments. At the base of the sulfate reduction zone, upward-diffusing CH4 is being oxidized, apparently in conjunction with SO4 reduction. CH4 generation by CO2 reduction is the most important metabolic process below the 15-m depth. CO2 removal is more rapid than CO2 input over the depth interval from 15 to 100 m, and results in a slight decrease in HCO3 concentration accompanied by a 40 per mil positive shift in d13C. The differences among coexisting CH4, CO2, and HCO3 are consistent with kinetic fractionation between CH4 and dissolved CO2, and equilibrium fractionation between CO2 and HCO3. At depths greater than 100 m, the rate of input of CO2 (d13C = -25 per mil) exceeds by 2 times the rate of removal of CO2 by conversion to CH4 (d13C of -60 to -65 per mil). This results in an increase of dissolved HCO3 concentration while maintaining d13C of HCO3 relatively constant at +10 per mil. Non-steady-state deposition has resulted in significantly higher organic carbon contents and unusually high (70 meq/l) pore-water alkalinities below 150 m. These high alkalinities are believed to be related more to spontaneous decarboxylation reactions than to biological processes. The general decrease in HCO3 concentration with constant d13C over the depth interval of 200 to 400 m probably reflects increased precipitation of authigenic carbonate. Input-output carbon isotope-mass balance calculations, and carbonate system equilibria in conjunction with observed CO2-CH4 ratios in the gas phase, independently suggest that CH4 concentrations on the order of 100 mmol/kg are present in the pore waters of Blake Outer Ridge sediments. This quantity of CH4 is believed to be insufficient to saturate pore waters and stabilize the CH4*6H2O gas hydrate. Results of these calculations are in conflict with the physical recovery of gas hydrate from 238 m, and with the indirect evidence (seismic reflectors, sediment frothing, slightly decreasing salinity and chlorinity with depth, and pressure core barrel observations) of gas-hydrate occurrence in these sediments. Resolution of this apparent conflict would be possible if CH4 generation were restricted to relatively thin (1-10 m) depth intervals, and did not occur uniformly at all depths throughout the sediment column, or if another methanogenic process (e.g., acetate fermentation) were a major contributor of gas.
Resumo:
The largest increase in export production in the eastern Pacific of the last 5.3 Myr (million years) occurred between 2.2 and 1.6 Myr, a time of major climatic and oceanographic reorganization in the region. Here, we investigate the causes of this event using reconstructions of export production, nutrient supply and oceanic conditions across the Pliocene-Pleistocene in the eastern equatorial Pacific (EEP) for the last 3.2 Myr. Our results indicate that the export production peak corresponds to a cold interval marked by high nutrient supply relative to consumption, as revealed by the low bulk sedimentary 15N/14N (d15N) and alkenone-derived sea surface temperature (SST) values. This ?0.6 million year long episode of enhanced delivery of nutrients to the surface of the EEP was predominantly initiated through the upwelling of nutrient-enriched water sourced in high latitudes. In addition, this phenomenon was likely promoted by the regional intensification of upwelling in response to the development of intense Walker and Hadley atmospheric circulations. Increased nutrient consumption in the polar oceans and enhanced denitrification in the equatorial regions restrained nutrient supply and availability and terminated the high export production event.
Resumo:
Total mercury (THg), methylmercury (MeHg) and stable isotopes of nitrogen (d15N) and carbon (d13C) were measured in three invertebrate, five fish, three seabird and three marine mammal species of central West Greenland to investigate trophic transfer of mercury in this Arctic marine food web. The food web magnification factor (FWMF) estimated as the slope of the regression between the natural logarithm of THg or MeHg concentrations (mg/kg dw) and tissue d15N (per mil) was estimated to 0.183 (SE = 0.052) for THg and 0.339 (SE = 0.075) for MeHg. The FWMFs were not only comparable with those reported for other Arctic marine food webs but also with quite different food webs such as freshwater lakes in the sub-Arctic, East Africa and Papua New Guinea. This suggests similar mechanisms of mercury assimilation and isotopic (d15N) discrimination among a broad range of aquatic taxa and underlines the possibility of broad ecosystem comparisons using the combined contaminant and stable isotope approach.
Resumo:
Ice-wedge polygon (IWP) mires in the Arctic and Subarctic are extremely vulnerable to climatic and environmental change. We present the results of a multidisciplinary paleoenvironmental study on IWPs in the northern Yukon, Canada. High-resolution laboratory analyses were carried out on a permafrost core and the overlying seasonally thawed (active) layer, from a low-centered IWP located in a drained lake basin on Herschel Island. In relation to 14 Accelerator Mass Spectrometry (AMS) radiocarbon dates spanning the last 5000 years, we report sedimentary data including grain size distribution and biogeochemical parameters (organic carbon, nitrogen, C/N ratio, d13C), stable water isotopes (d18O, dD), as well as fossil pollen, plant macrofossil and diatom assemblages. Three sediment units (SUs) correspond to the main stages of deposition (1) in a thermokarst lake (SU1: 4950 to 3950 cal yrs BP), (2) during transition from lacustrine to palustrine conditions after lake drainage (SU2: 3950 to 3120 cal yrs BP), and (3) in palustrine conditions in the IWP field that developed after drainage (SU3: 3120 cal yrs BP to AD 2012). The lacustrine phase (pre 3950 cal yrs BP) is characterized by planktonic-benthic and pioneer diatoms species indicating circumneutral waters, and very few plant macrofossils. The pollen record has captured a regional signal of relatively stable vegetation composition and climate for the lacustrine stage of the record until 3950 cal yrs BP. Palustrine conditions with benthic and acidophilic species characterize the peaty shallow-water environments of the low-centered IWP. The transition from lacustrine to palustrine conditions was accompanied by acidification and rapid revegetation of the lake bottom within about 100 years. Since the palustrine phase we consider the pollen record as a local vegetation proxy dominated by the plant communities growing in the IWP. Ice-wedge cracking in water-saturated sediments started immediately after lake drainage at about 3950 cal yrs BP and led to the formation of an IWP mire. Permafrost aggradation through downward closed-system freezing of the lake talik is indicated by the stable water isotope record. The originally submerged IWP center underwent gradual drying during the past 2000 years. This study highlights the sensitivity of permafrost landscapes to climate and environmental change throughout the Holocene.
Resumo:
We used piston cores recovered in the western Bering Sea to reconstruct millennial-scale changes in marine productivity and terrigenous matter supply over the past ~180 kyr. Based on a geochemical multi-proxy approach, our results indicate closely interacting processes controlling marine productivity and terrigenous matter supply comparable to the situation in the Okhotsk Sea. Overall, terrigenous inputs were high, whereas export production was low. Minor increases in marine productivity occurred during intervals of Marine Isotope Stage 5 and interstadials, but pronounced maxima were recorded during interglacials and Termination I. The terrigenous material is suggested to be derived from continental sources on the eastern Bering Sea shelf and to be subsequently transported via sea ice, which is likely to drive changes in surface productivity, terrigenous inputs, and upper-ocean stratification. From our results we propose glacial, deglacial, and interglacial scenarios for environmental change in the Bering Sea. These changes seem to be primarily controlled by insolation and sea-level forcing which affect the strength of atmospheric pressure systems and sea-ice growth. The opening history of the Bering Strait is considered to have had an additional impact. High-resolution core logging data (color b*, XRF scans) strongly correspond to the Dansgaard-Oeschger climate variability registered in the NGRIP ice core and support an atmospheric coupling mechanism of Northern Hemisphere climates.
Resumo:
Elemental C and N percent composition and natural abundance of stable C and N isotopes of plankton species and/or size-fractions collected in several cruises on the N Atlantic Ocean from Greenland to Norway and around Iceland. Determinations included key copepod and krill species. Lipid extraction was performed in some samples to determine carbón isotope depletion factors.
Resumo:
The Indian Ocean is an important component of the global thermohaline circulation system, as its western boundary currents feed the Agulhas Current, an integral part of the Atlantic meridional overturning circulation. However, Indian Ocean intermediate to deep-water variability on glacial-interglacial timescales is still a matter of debate. Here we provide stable carbon and oxygen isotopes and sediment elemental compositions of a sediment core from the edge of the Somali Basin. We demonstrate that throughout the past 600 kyr the intermediate western Indian Ocean was primarily bathed by Southern Ocean sourced Upper Circumpolar Deep Water (UCDW). This Southern Ocean sourced water mass enters the Somali Basin via the Amirante Passage or the Mozambique Channel and represents a downstream equivalent of South Atlantic UCDW. We cannot clearly account for the shortterm passage of Red Sea Water (RSW) at 1500 m water depth along the African continental margin, as previously suggested, on glacial-interglacial timescales.
Resumo:
We examined controls on the carbon isotopic composition of sea ice brines and organic matter during cruises to the Ross Sea, Antarctica in November/December 1998 and November/December 2006. Brine samples were analyzed for salinity, nutrients, total dissolved inorganic carbon (sum CO2), and the 13C/12C ratio of Sum CO2 (d13C(sum CO2)). Particulate organic matter from sea ice cores was analyzed for percent particulate organic carbon (POC), percent total particulate nitrogen (TPN), and stable carbon isotopic composition (d13C(POC)). Sum CO2 in sea ice brines ranged from 1368 to 7149 µmol/kg, equivalent to 1483 to 2519 µmol/kg when normalized to 34.5 psu salinity (s sum CO2), the average salinity of Ross Sea surface waters. Sea ice primary producers removed up to 34% of the available sum CO2, an amount much higher than the maximum removal observed in sea ice free water. Carbonate precipitation and CO2 degassing may reduce s sum CO2 by a similar amount (e.g., 30%) in the most hypersaline sea ice environments, although brine volumes are low in very cold ice that supports these brines. Brine d13C(sum CO2) ranged from -2.6 to +8.0 per mil while d13C(POC) ranged from -30.5 to -9.2 per mil. Isotopic enrichment of the sum CO2 pool via net community production accounts for some but not all carbon isotopic enrichment of sea ice POC. Comparisons of s sum CO2, d13C(sum CO2), and d13C(POC) within sea ice suggest that epsilon p (the net photosynthetic fractionation factor) for sea ice algae is ~8 per mil smaller than the epsilon p observed for phytoplankton in open water regions of the Ross Sea. These results have implications for modeling of carbon uptake and transformation in the ice-covered ocean and for reconstruction of past sea ice extent based on stable isotopic composition of organic matter in sediment cores.