991 resultados para Nickel-selective sensor
Resumo:
Plant cell cultures are a suitable model system for investigation of the physiological mechanisms of tolerance to environmental stress. We have determined the effects of Cd (0.1 and 0.2 mM CdCl(2)) and Ni (0.075 and 0.75 mM NiCl(2)) on Nicotiana tabacum L. cv. Bright Yellow (TBY-2) cell suspension cultures over a 72-h period. Inhibition of growth, loss of cell viability and lipid peroxidation occurred, in general, only when the TBY-2 cells were grown at 0.2 mM CdCl(2) and at 0.75 mM NiCl(2). At 0.1 mM CdCl(2), a significant increase in growth was determined at the end of the experiment. Increases in the activities of all of the four enzymatic antioxidant defence systems tested, were induced by the two concentrations of Cd and Ni, but at different times during the period of metal exposure. Overall, the cellular antioxidant responses to Cd and Ni were similar and were apparently sufficient to avoid oxidative stress at the lower concentrations of Cd and Ni. The activities of glutathione reductase and glutathione S-transferase increased early but transiently, whereas the activities of catalase and guaiacol peroxidase increased in the latter half of the experimental period. Therefore it is likely that the metabolism of reduced glutathione was enhanced during the initial onset of the stress, while catalase and guaiacol-type peroxidase appeared to play a more important role in the antioxidant response once the stress became severe.
Resumo:
Background, aim, and scope The retention of potentially toxic metals in highly weathered soils can follow different pathways that variably affect their mobility and availability in the soil-water-plant system. This study aimed to evaluate the effects of pH, nature of electrolyte, and ionic strength of the solution on nickel (Ni) adsorption by two acric Oxisols and a less weathered Alfisol. Materials and methods The effect of pH on Ni adsorption was evaluated in surface and subsurface samples from a clayey textured Anionic `Rhodic` Acrudox ( RA), a sandy-clayey textured Anionic `Xantic` Acrudox (XA), and a heavy clayey textured Rhodic Kandiudalf (RK). All soil samples were equilibrated with the same concentration of Ni solution (5.0 mg L(-1)) and two electrolyte solutions (CaCl(2) or NaCl) with different ionic strengths (IS) (1.0, 0.1 and 0.01 mol L(-1)). The pH of each sample set varied from 3 to 10 in order to obtain sorption envelopes. Results and discussion Ni adsorption increased as the pH increased, reaching its maximum of nearly pH 6. The adsorption was highest in Alfisol, followed by RA and XA. Competition between Ni(2+) and Ca(2+) was higher than that between Ni(2+) and Na(+) in all soil samples, as shown by the higher percentage of Ni adsorption at pH 5. At pH values below the intersection point of the three ionic strength curves (zero point of salt effect), Ni adsorption was generally higher in the more concentrated solution (highest IS), probably due to the neutralization of positive charges of soil colloids by Cl(-) ions and consequent adsorption of Ni(2+). Above this point, Ni adsorption was higher in the more diluted solution (lowest ionic strength), due to the higher negative potential at the colloid surfaces and the lower ionic competition for exchange sites in soil colloids. Conclusions The effect of ionic strength was lower in the Oxisols than in the Alfisol. The main mechanism that controlled Ni adsorption in the soils was the ionic exchange, since the adsorption of ionic species varied according to the variation of pH values. The ionic competition revealed the importance of electrolyte composition and ionic strength on Ni adsorption in soils from the humid tropics. Recommendations and perspectives The presence of NaCl or CaCl(2) in different ionic strengths affects the availability of heavy metals in contaminated soils. Therefore, the study of heavy metal dynamics in highly weathered soils must consider this behavior, especially in soils with large amounts of acric components.
Resumo:
Evaluation of two semi-selective media to detect Curtobacterium flaccumfaciens pv. flaccumfaciens in bean seeds This study aimed to compare the effectiveness of the semi-selective MSCFF and modified CNS culture media in detecting Curtobacterium flaccumfaciens pv. flaccumfaciens (Cff) in bean seeds, using the streak and spread plate techniques. Four 500 g subsamples, obtained from two samples of bean seeds, were immersed in 600 mL of sterile distilled water for 18 h at 5 degrees C. Suspensions were picked and transferred to plates with both culture media. Plates were then incubated at 28 degrees C, and bacterial growth on both media was evaluated 72 and 144 hours later, compared to the growth of a Cff reference strain. Both media revealed the presence of Cff colonies. Typical colonies were isolated for PCR analyses and pathogenicity tests on tobacco leaves. A characteristic Cff growth on MSCFF medium was observed for the seed samples, for the two plate techniques used, in both evaluations. On the modified CNS culture medium, the bacterial growth was only detected in seed samples after 144 hours of incubation, regardless of the plate technique used. The results showed Cff grew faster on the MSCFF semi-selective culture medium. Bacterial isolates tested were identified as Cff by both PCR analyses and a positive tobacco hypersensitivity reaction.
Resumo:
The aim of present study was to verify the in vitro antitumor activity of a ruthenium complex, cis-(dichloro)tetraammineruthenium(III) chloride (cis-[RuCl(2)(NH(3))(4)]Cl) toward different tumor cell lines. The antitumor studies showed that ruthenium(III) complex presents a relevant cytotoxic activity against murine B cell lymphoma (A-20), murine ascitic sarcoma 180 (S-180), human breast adenocarcinoma (SK-BR-3), and human T cell leukemia (Jurkat) cell lines and a very low cytotoxicity toward human peripheral blood mononuclear cells. The ruthenium(III) complex decreased the fraction of tumor cells in G0/G1 and/or G2-M phases, indicating that this compound may act on resting/early entering G0/G1 cells and/or precycling G2-M cells. The cytotoxic activity of a high concentration (2 mg mL(-1)) of cis-[RuCl(2)(NH(3))(4)]Cl toward Jurkat cells correlated with an increased number of annexin V-positive cells and also the presence of DNA fragmentation, suggesting that this compound induces apoptosis in tumor cells. The development of new antineoplastic medications demands adequate knowledge in order to avoid inefficient or toxic treatments. Thus, a mechanistic understanding of how metal complexes achieve their activities is crucial to their clinical success and to the rational design of new compounds with improved potency.
Resumo:
Catalytic activities and deactivation characteristics of oxides-supported nickel catalysts for the reaction of methane reforming with carbon dioxide were investigated. The dynamic carbon deposition on various nickel catalysts was also studied by a thermogravimetric method. Among the catalysts prepared, Ni/La2O3, Ni/alpha-Al2O3, Ni/SiO2, and Ni/CeO2 showed very high CH4 and CO2 conversions and moderate deactivation whereas Ni/MgO and Ni/TiO2 had lower conversions when the Ni reduction was conducted at 500 degrees C. When Ni/MgO catalyst was reduced at 800 degrees C, it exhibited not only comparable conversions of CH4 and CO2 with other active catalysts but also much longer period of stability without deactivation. The amount of carbon deposited in Ni-based catalysts varied depending on the nature of support and followed the order of Ni/La2O3 > Ni/alpha-Al2O3 > Ni/SiO2 > Ni/MgO > Ni/CeO2 at 700 degrees C. The carbons formed on the catalyst surface showed different structural and chemical properties, and these in turn affected the catalytic activity of the catalysts.
Resumo:
The catalytic activities of Ni/gamma-Al2O3 catalysts prepared using different nickel precursor compounds were studied for the reaction of methane reforming with CO2. It is found that the nickel precursor employed in the catalyst preparation plays an important role. The catalyst based on nickel nitrate exhibited higher catalytic activity and stability over a 24-h test period than the other two catalysts derived from nickel chloride and nickel acetylacetonate. A comprehensive characterisation of the catalysts showed that the weak interaction between Ni particles and gamma-Al2O3 resulted in more active sites on Ni nitrate-derived Ni/gamma-Al2O3 catalyst. Coking studies showed that carbon deposition on Ni catalysts derived from inorganic precursors (nitrate and chloride) were more severe than on the organic precursor-derived catalyst. However, the Ni nitrate-derived catalyst was found to have the highest stability (or lowest deactivation rate) mainly due to the active carbon species (-C-C-) of the resulting graphitic structure and their close contact with the metal particles. In contrast, the carbon formed on Ni-AA catalyst (from Ni acetylacetonate) is dominated by inactive -CO-C- species, thus leading to a rapid accumulation of carbon in this catalyst and more severe deactivation. (C) 1998 Elsevier Science B.V.
Resumo:
Cerebral responses to alternating periods of a control task and a selective letter generation paradigm were investigated with functional Magnetic Resonance Imaging (fMRI). Subjects selectively generated letters from four designated sets of six letters from the English language alphabet, with the instruction that they were not to produce letters in alphabetical order either forward or backward, repeat or alternate letters. Performance during this condition was compared with that of a control condition in which subjects recited the same letters in alphabetical order. Analyses revealed significant and extensive foci of activation in a number of cerebral regions including mid-dorsolateral frontal cortex, inferior frontal gyrus, precuneus, supramarginal gyrus, and cerebellum during the selective letter generation condition. These findings are discussed with respect to recent positron emission tomography (PET) and fMRI studies of verbal working memory and encoding/retrieval in episodic memory.
Resumo:
Naturally occurring clays and pillared clays are used as supports of nickel catalysts for the methane reforming reaction with carbon dioxide to synthesis gas. The structural and textural characteristics of the supports and catalysts are systematically examined by N-2 adsorption/desorption and X-ray diffraction (XRD) techniques. It is found that the pore structures and surface properties of supports greatly affect the catalytic activities of the catalysts prepared. The catalysts supported on the mesoporous clays or pillared clays are obviously superior to those on microporous supports because the mesoporous supports are highly thermal stable compared to the microporous ones. It is found that introducing lanthanum to the supports can improve the catalyst basicity and thus enhance the catalytic activities of these catalysts. Deactivation of catalysts prepared and factors influencing their stability are also discussed. (C) 1998 Academic Press.
Resumo:
Helicoverpa armigera is a serious insect pest of sweet corn in Australia and is becoming increasingly difficult to manage with conventional chemical insecticides due to resistance problems. A number of alternative H. armigera control options were evaluated in sweet corn and compared with deltamethrin and no action (control). The alternative tactics evaluated were: heliothis nuclear polyhedrosis virus plus Trichogramma nr. brassicae releases; Bacillus thuringiensis; and Trichogramma alone. The H. tea nuclear polyhedrosis virus + Trichogramma plots had the lowest cob damage (6.0%), followed by the B. thuringiensis plots (12.0%), Trichogramma alone plots (20.2%), control plots (23.2%) and deltamethrin plots (53.5%). There was no evidence to suggest that the Trichogramma nr. brassicae releases had any impact on H. armigera egg mortality. However, there was a large natural population of Trichogramma pretiosum in all plots. The application of deltamethrin reduced the action of these wasps and predators, resulting in higher larval infestation and significantly more cob damage. The findings indicate that the pathogens heliothis nuclear polyhedrosis virus and B. thuringiensis can effectively control H. armigera when their action complements high natural levels of egg parasitism, and that they have potential for use in integrated pest management programs in sweet corn.
Resumo:
Monocrotaline is a pyrrolizidine alkaloid known to cause toxicity in humans and animals. Its mechanism of biological action is still unclear although DNA crosslinking has been suggested to a play a role in its activity. In this study we found that an active metabolite of monocrotaline, dehydromonocrotaline (DHM), alkylates guanines at the N7 position of DNA with a preference for 5'-GG and 5'-GA sequences; In addition, it generates piperidine- and heat-resistant multiple DNA crosslinks, as confirmed by electrophoresis and electron microscopy. On the basis of these findings, we propose that DHM undergoes rapid polymerization to a structure which is able to crosslink several fragments of DNA.
Resumo:
In previous parts of this study we developed procedures for the high-efficiency chemical extraction of soluble and insoluble protein from intact Escherichia coli cells. Although high yields were obtained, extraction of recombinant protein directly from cytoplasmic inclusion bodies led to low product purity due to coextraction of soluble contaminants. In this work, a two-stage procedure for the selective extraction of recombinant protein at high efficiency and high purity is reported. In the first stage, inclusion-body stability is promoted by the addition of 15 mM 2-hydroxyethyldisulfide (2-HEDS), also known as oxidized P-mercaptoethanol, to the permeabil ization buffer (6 M urea + 3 mM ethylenediaminetetra-acetate [EDTA]). 2-HEDS is an oxidizing agent believed to promote disulfide bond formation, rendering the inclusion body resistant to solubilization in 6 M urea. Contaminating proteins are separated from the inclusion-body fraction by centrifugation. in the second stage, disulfide bonds are readily eliminated by including reducing agent (20 mM dithiothreitol [DTT]) into the permeabilization buffer. Extraction using this selective two-stage process yielded an 81% (w/w) recovery of the recombinant protein Long-R-3-IGF-I from inclusion bodies located in the cytoplasm of intact E. coli, at a purity of 46% (w/w). This was comparable to that achieved by conventional extraction (mechanical disruption followed by centrifugation and solubilization). A pilot-scale procedure was also demonstrated using a stirred reactor and diafiltration. This is the first reported study that achieves both high extraction efficiency and selectivity by the chemical treatment of cytoplasmic inclusion bodies in intact bacterial cells. (C) 1999 John Wiley & Sons, Inc.
Resumo:
The gold surface of a quartz crystal microbalance was modified by the attachment of silica particles derivatised with N-[(3-trimethoxysilyl)propyl] ethylenediaminetriacetic acid. The device was employed to study the kinetics of the interaction of aqueous solutions of lead(II) nitrate and silver(I) nitrate with the surface and for the selective separation of the metal ions.