914 resultados para New materials


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A promising approach to the fabrication of materials with nanoscale features is the transfer of liquid-crystalline structure to polymers. However, this has not been achieved in systems with full three-dimensional periodicity. Here we demonstrate the fabrication of self-assembled three-dimensional nanostructures by polymer templating blue phase I, a chiral liquid crystal with cubic symmetry. Blue phase I was photopolymerized and the remaining liquid crystal removed to create a porous free-standing cast, which retains the chiral three-dimensional structure of the blue phase, yet contains no chiral additive molecules. The cast may in turn be used as a hard template for the fabrication of new materials. By refilling the cast with an achiral nematic liquid crystal, we created templated blue phases that have unprecedented thermal stability in the range -125 to 125 °C, and that act as both mirrorless lasers and switchable electro-optic devices. Blue-phase templated materials will facilitate advances in device architectures for photonics applications in particular.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A promising approach to the fabrication of materials with nanoscale features is the transfer of liquid-crystalline structure to polymers. However, this has not been achieved in systems with full three-dimensional periodicity. Here we demonstrate the fabrication of self-assembled three-dimensional nanostructures by polymer templating blue phase I, a chiral liquid crystal with cubic symmetry. Blue phase I was photopolymerized and the remaining liquid crystal removed to create a porous free-standing cast, which retains the chiral three-dimensional structure of the blue phase, yet contains no chiral additive molecules. The cast may in turn be used as a hard template for the fabrication of new materials. By refilling the cast with an achiral nematic liquid crystal, we created templated blue phases that have unprecedented thermal stability in the range-125 to 125°C, and that act as both mirrorless lasers and switchable electro-optic devices. Blue-phase templated materials will facilitate advances in device architectures for photonics applications in particular. © 2012 Macmillan Publishers Limited. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Laser micro machining is fast gaining popularity as a method of fabricating micro scale structures. Lasers have been utilised for micro structuring of metals, ceramics and glass composites and with advances in material science, new materials are being developed for micro/nano products used in medical, optical, and chemical industries. Due to its favourable strength to weight ratio and extreme resistance to chemical attack, glassy carbon is a new material that offers many unique properties for micro devices. The laser machining of SIGRADUR® G grade glassy carbon was characterised using a 1065 nm wavelength Ytterbium doped pulsed fiber laser. The laser system has a selection of 25 preset waveforms with optimised peak powers for different pulsing frequencies. The optics provide spot diameter of 40 μm at the focus. The effect of fluence, transverse overlap and pulsing frequency (as waveform) on glassy carbon was investigated. Depth of removal and surface roughness were measured as machining quality indicators. The damage threshold fluence was determined to be 0.29 J/cm2 using a pulsing frequency of 250 kHz and a pulse width of 18 ns (waveform 3). Ablation rates of 17 < V < 300 μm3/pulse were observed within a fluence range of 0.98 < F < 2.98 J/cm2. For the same fluence variation, 0.6 μm to 6.8 μm deep trenches were machined. Trench widths varied from 29 μm at lower fluence to 47 μm at the higher fluence. Square pockets, 1 mm wide, were machined to understand the surface machining or milling. The depth of removal using both waveform 3 and 5 showed positive correlation with fluence, with waveform 5 causing more removal than waveform 3 for the same fluence. Machined depths varied from less than 1 μm to nearly 40 μm. For transverse overlap variation using waveform 3, the best surface finish with Rz = 1.1 μm was obtained for fluence 0.792 J/cm2 for transverse overlap of 1 μm, 6 μm, and 9 μm at machined depths of 22.9 μm, 6.6 μm, and 4.6 μm respectively. For fluence of 1.426 J/cm2, the best surface finish with Rz = 1.2 μm was obtained for transverse overlap of 6 μm, and 9 μm at machined depths of 12.46 μm, and 8.6 μm respectively. The experimental data was compiled as machining charts and utilised for fabricating a micro-embossing glassy carbon master toolsets as a capability demonstration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Matching a new technology to an appropriate market is a major challenge for new technology-based firms (NTBF). Such firms are often advised to target niche-markets where the firms and their technologies can establish themselves relatively free of incumbent competition. However, technologies are diverse in nature and do not benefit from identical strategies. In contrast to many Information and Communication Technology (ICT) innovations which build on an established knowledge base for fairly specific applications, technologies based on emerging science are often generic and so have a number of markets and applications open to them, each carrying considerable technological and market uncertainty. Each of these potential markets is part of a complex and evolving ecosystem from which the venture may have to access significant complementary assets in order to create and sustain commercial value. Based on dataset and case study research on UK advanced material university spin-outs (USO), we find that, contrary to conventional wisdom, the more commercially successful ventures were targeting mainstream markets by working closely with large, established competitors during early development. While niche markets promise protection from incumbent firms, science-based innovations, such as new materials, often require the presence, and participation, of established companies in order to create value. © 2012 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The introduction of new materials and processes to microfabrication has, in large part, enabled many important advances in microsystems, labon- a-chip devices, and their applications. In particular, capabilities for cost-effective fabrication of polymer microstructures were transformed by the advent of soft lithography and other micromolding techniques 1,2, and this led a revolution in applications of microfabrication to biomedical engineering and biology. Nevertheless, it remains challenging to fabricate microstructures with well-defined nanoscale surface textures, and to fabricate arbitrary 3D shapes at the micro-scale. Robustness of master molds and maintenance of shape integrity is especially important to achieve high fidelity replication of complex structures and preserving their nanoscale surface texture. The combination of hierarchical textures, and heterogeneous shapes, is a profound challenge to existing microfabrication methods that largely rely upon top-down etching using fixed mask templates. On the other hand, the bottom-up synthesis of nanostructures such as nanotubes and nanowires can offer new capabilities to microfabrication, in particular by taking advantage of the collective self-organization of nanostructures, and local control of their growth behavior with respect to microfabricated patterns. Our goal is to introduce vertically aligned carbon nanotubes (CNTs), which we refer to as CNT "forests", as a new microfabrication material. We present details of a suite of related methods recently developed by our group: fabrication of CNT forest microstructures by thermal CVD from lithographically patterned catalyst thin films; self-directed elastocapillary densification of CNT microstructures; and replica molding of polymer microstructures using CNT composite master molds. In particular, our work shows that self-directed capillary densification ("capillary forming"), which is performed by condensation of a solvent onto the substrate with CNT microstructures, significantly increases the packing density of CNTs. This process enables directed transformation of vertical CNT microstructures into straight, inclined, and twisted shapes, which have robust mechanical properties exceeding those of typical microfabrication polymers. This in turn enables formation of nanocomposite CNT master molds by capillary-driven infiltration of polymers. The replica structures exhibit the anisotropic nanoscale texture of the aligned CNTs, and can have walls with sub-micron thickness and aspect ratios exceeding 50:1. Integration of CNT microstructures in fabrication offers further opportunity to exploit the electrical and thermal properties of CNTs, and diverse capabilities for chemical and biochemical functionalization 3. © 2012 Journal of Visualized Experiments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

New materials are needed to replace degenerated intervertebral disc tissue and to provide longer-term solutions for chronic back-pain. Replacement tissue potentially could be engineered by seeding cells into a scaffold that mimics the architecture of natural tissue. Many natural tissues, including the nucleus pulposus (the central region of the intervertebral disc) consist of collagen nanofibers embedded in a gel-like matrix. Recently it was shown that electrospun micro- or nano-fiber structures of considerable thickness can be produced by collecting fibers in an ethanol bath. Here, randomly aligned polycaprolactone electrospun fiber structures up to 50 mm thick are backfilled with alginate hydrogels to form novel composite materials that mimic the fiber-reinforced structure of the nucleus pulposus. The composites are characterized using both indentation and tensile testing. The composites are mechanically robust, exhibiting substantial strain-to-failure. The method presented here provides a way to create large biomimetic scaffolds that more closely mimic the composite structure of natural tissue. © 2012 Materials Research Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The power-conversion efficiency of solid-state dye-sensitized solar cells can be optimized by reducing the energy offset between the highest occupied molecular orbital (HOMO) levels of dye and hole-transporting material (HTM) to minimize the loss-in-potential. Here, we report a study of three novel HTMs with HOMO levels slightly above and below the one of the commonly used HTM 2,2′,7,7′- tetrakis(N,N-di-p-methoxyphenylamino)-9,9′- spirobifluorene (spiro-OMeTAD) to systematically explore this possibility. Using transient absorption spectroscopy and employing the ruthenium based dye Z907 as sensitizer, it is shown that, despite one new HTM showing a 100% hole-transfer yield, all devices based on the new HTMs performed worse than those incorporating spiro-OMeTAD. We further demonstrate that the design of the HTM has an additional impact on the electronic density of states present at the TiO2 electrode surface and hence influences not only hole- but also electron-transfer from the sensitizer. These results provide insight into the complex influence of the HTM on charge transfer and provide guidance for the molecular design of new materials. © 2013 American Chemical Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although cementation is a widely recognized solidification/ stabilization process for immobilisation of Intermediate Level Radioactive Waste (ILRW), the low resistance to hyperalkaline pore waters compromises the effectiveness of the process when Portland Cement (PC) is employed. Moreover the manufacture of PC is responsible for significant CO2 emissions. In this context, low pH cements are environmentally more suitable and have emerged as a potential alternative for obtaining secure waste forms. This paper summarises the achievements on development of low-pH cements and the challenges of using these new materials for the ILRW immobilisation. The performance of waste forms is also discussed in terms of radionuclides release. Reactive magnesium oxide and magnesium phosphate cements are emphasised as they feature important advantages such as consumption of available constituents for controlling acid-base reactions, reduced permeability and higher density. Additionally, in order to identify new opportunities for study, the long-term modelling approach is also briefly discussed. Copyright © 2013 by ASME.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We describe a first-principles-based strategy to predict the macroscopic toughness of a gamma-Ni(Al)/alpha-Al2O3 interface. Density functional theory calculations are used to ascertain energy changes upon displacing the two materials adjacent to the interface, with relaxation conducted over all atoms located within adjoining rows. Traction/displacernent curves are obtained from derivatives of the energy. Calculations are performed in mode I (opening), mode II (shear) and at a phase angle of 45 degrees. The shear calculations are conducted for displacements along < 110 > and < 112 > of the Ni lattice. A generalized interface potential function is used to characterize the results. Initial fitting to both the shear and normal stress results is required to calibrate the unknowns. Thereafter, consistency is established by using the potential to predict other traction quantities. The potential is incorporated as a traction/displacement function within a cohesive zone model and used to predict the steady-state toughness of the interface. For this purpose, the plasticity of the Ni alloy must be known, including the plasticity length scale. Measurements obtained for a gamma-Ni superalloy are used and the toughness predicted over the full range of mode mixity. Additional results for a range of alloys are used to demonstrate the influences of yield strength and length scale.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

采用微波消解、电感耦合高频等离子体原子发射光谱(ICP-AES)的方法,对62份不同小麦品种(系)中锌、铁、铜、钙、钠和钾的含量进行了测定。同时利用红外线品质测定仪对主要品质指标粗蛋白、湿面筋、沉降值进行了测定。结果表明,不同小麦品种(系)中各种矿质元素的含量存在差异,2006年小麦品种中铁含量变幅为18.55-58.19 ug/g,平均为30.83ug/g ,最高与最低的相差39.64ug/g;锌含量变幅为5.70-25.80 ug/g,平均为15.13ug/g ,最高与最低相差20.10ug/g。2008年小麦品种(系)中铁含量变幅为16.68-52.25 ug/g,平均为30.10ug/g,最高与最低相差35.58ug/g;锌含量变幅为12.29-33.47 ug/g,平均为21.11ug/g,最高与最低相差21.18ug/g;钙含量变幅为167.53-348.80ug/g,平均为248.59ug/g,最高与最低相差192.59ug/g;铜含量变幅为2.32-5.83 ug/g,平均为2.98ug/g,最高与最低的相差3.61ug/g;钾含量变幅为1822.71-4414.91 ug/g,平均为2617.87ug/g,最高与最低的相差2634.72ug/g;钠含量变幅为10.25-39.82 ug/g,平均为23.05ug/g,最高与最低的相差29.57ug/g。 两年不同小麦品种(系)中矿质元素的含量分析结果表明:铁、铜、钙、钠和钾含量年际变化不明显,说明小麦对铁、铜、钙、钠和钾的吸收较稳定;锌含量变化较大,可能受环境的影响比较大。分析各矿质元素含量与粗蛋白、湿面筋、沉降值及元素之间的相关关系,结果表明,锌含量与粗蛋白含量呈极显著正相关关系,相关系数为0.317,与湿面筋含量之间呈显著正相关,相关系数达到0.246;铁含量与粗蛋白含量呈显著的正相关关系,相关系数是0.262;铜、钙、钠和钾含量与粗蛋白含量、湿面筋和沉降值之间存在正相关,但不显著,其中钠与沉降值之间为负相关。表明施锌或铁对提高小麦粗蛋白和湿面筋有显著效应,其余矿质元素有促进作用但不明显。 利用RAPD分子标记技术对川育23、41058、川育20及其父母本进行分析,力图从分子水平找到小麦矿质元素含量之间的差异性,琼脂糖电泳结果表明不同的小麦品种(系)间扩增出了差异条带。 以上研究结果,将对筛选“微量营养强化型”小麦新材料,选育“微量营养强化型”小麦新品种奠定基础。 62 different wheat cultivars was digested with HNO3 in a tightly closed vessel heated under micro-wave,then contents of zinc,iron,copper,calcium,sodium and potassium were determined by inductively coupled plasma-atomic emission spectroscopy(ICP-AES).The main indexes of wheat quality such as total protein、wet glu and sedimentation volume were detected by Infratec 1255 Food & Feed Analyzer at the same time.The obtained results showed that variation for all of the mineral elements concentrations among different cultivars were observed .In 2006, the amplitude variation of the iron content was 18.55-58.19 ug/g,the average value was 30.83ug/g,and 39.64ug/g between the highest-content cultivar and the lowest one; the amplitude variation of the zinc content was 5.70-25.8 ug/g,the average value was 15.13ug/g,and 20.10ug/g between the highest-content cultivar and the lowest one.In 2008, the amplitude variation of the iron content was 16.68-52.25 ug/g,the average value was 30.10ug/g,and 35.58ug/g between the highest-content cultivar and the lowest one; the amplitude variation of the zinc content was 12.29-33.47 ug/g,the average value was 21.11ug/g,and 21.18ug/g between the highest-content cultivar and the lowest one; the amplitude variation of the calcium content was 167.53-348.80ug/g,the average value was 248.59ug/g,and 192.59ug/g between the highest-content cultivar and the lowest one; the amplitude variation of the copper content was 2.32-5.83 ug/g,the average value was 2.98ug/g,and 3.61ug/g between the highest-content cultivar and the lowest one; the amplitude variation of the potassium content was 1822.71-4414.91 ug/g,the average value was 2617.87ug/g,and 2634.72ug/g between the highest-content cultivar and the lowest one; the amplitude variation of the sodium content was 10.25-39.82 ug/g,the average value was 23.05ug/g,and 29.57ug/g between the highest-content cultivar and the lowest one. Analysis was made on the annual variation of mineral elements content in different Wheat cultivars ,the result shows:there is no obvious difference of iron ,copper ,sodium、calcium and potassium concentrations in wheat cultivars, suggesting the absorption of the iron, copper, sodium、calcium and potassium by wheat are relatively steady ,but zinc concentrations change obviously ,maybe influenced heavily by environment . The correlation between mineral elements 、mineral elements and total protein、mineral elements and sedimentation volume as well as mineral elements and wet glut were analysed in this paper, the result showed that there was significant positive correlation between zinc content and total protein (the correlation coefficient is 0.317), positive correlation between zinc content and wet glu (the correlation coefficient is 0.246), positive correlation between iron content and total protein (the correlation coefficient is 0.262). there was positive but not obvious correlation between the contents of copper, calcium, sodium or potassium and total protein, wet glut or sedimentation volume,among which was negative correlation between sodium and sedimentation volume.It was indicated zinc or iron fertilization has prominent effects in improving the total protein in wheat, the rest mineral elements have Non- obvious facilitation. The study then forecasted the genetic difference of different wheat by the molecular marker of RAPD in order to find differences in molecular level. Chuanyu23、41058、chuanyu20 as well as their male and female parents were analysed by RAPD markers,Agarose gel electrophoresis of DNA revealed the appearance of differential bands . The above-mentioned results of this study establish the foundation to screening the new materials of wheat of " strengthening type of micro- nutrition ", and to breeding the new wheat cultivars of" strengthening type of micro- nutrition ".

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two organically templated trivalent metal-containing crystalline zirconium phosphate materials FeZrPO-8 and AlZrPO-8 have been prepared hydrothermally by using fluoride as a mineralizer, and 1,6-diaminohexane (DAH) as templates. The powder XRD patterns indicate that the as-synthesized products are new materials. Substitutions of Al3+ or Fe3+ into Zr4+ sites were confirmed by a combination of powder X-ray diffraction (XRD) and nuclear magnetic resonance (NMR) studies. The thermal behavior of the title compounds have been investigated using TG-DTA and X-ray thermodiffractometry, which indicated that the inorganic framework of the compounds are thermally stable up to similar to400 degreesC. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Inorganic nanoparticles (NPs) with attractive electronic, optical, magnetic, thermal and catalytic properties have attracted great interest due to their important applications in physics, chemistry, biology, medicine, materials science and interdisciplinary fields. Biomolecule-NP hybrid systems, which combine recognition and catalytic properties of biomolecules with electronic, optical, magnetic and catalytic properties of NPs, are particularly new materials with synergistic properties originating from the components of the hybrid composites. The biomolecule-NP hybrid system has excellent prospects for interfacing biological recognition events with electronic signal transduction so as to design a new generation of bioelectronic devices with high sensitivity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel cemented carbides alloy (W0.4Al0.6)C-0.65-Co were prepared by mechanical alloying and hot-pressing sintering in this work. Hot-pressing (HP) as a common technique was performed to fabricate the bulk bodies of the hard alloys. The hardness, bending strength, density of the novel hard alloy are also tested, and it has superior mechanical properties. The hardness of (W0.4Al0.6)C-0.65-Co hard alloy was very high, and the density, operate cost of the novel material were much lower than WC-Co, more important is the aluminum dissolving is not decrease the strength compared with the WC-Co system. There is almost no eta-phase in the (W0.4Al0.6)C-0.65-Co cemented carbides system even the carbon deficient reaches the astonishing value of 35%. This novel property will give us more choice to design and gain new materials that we needed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electrochemistry and electrogenerated chemiluminescence (ECL) of ruthenium(II) tris(bipyridine) (Ru(bpy)(3)(2+)) ion-exchanged in carbon nanotube (CNT)/Nafion composite films were investigated with tripropylamine (TPA) as a coreactant at a glassy carbon (GC) electrode. The major goal of this work was to investigate and develop new materials and immobilization approaches for the fabrication of ECL-based sensors with improved sensitivity, reactivity, and long-term stability. Ru(bpy)(3)(2+) could be strongly incorporated into Nafion film, but the rate of charge transfer was relative slow and its stability was also problematic. The interfusion of CNT in Nafion resulted in a high peak current of Ru(bpy)(3)(2+) and high ECL intensity. The results indicated that the composite film had more open structures and a larger surface area allowing faster diffusion of Ru(bpy)(3)(2+) and that the CNT could adsorb Ru(bpy)(3)(2+) and also acted as conducting pathways to connect Ru(bpy)(3)(2+) sites to the electrode. In the present work, the sensitivity of the ECL system at the CNT/Nafion film-modified electrodes was more than 2 orders of magnitude higher than that observed at a silica/Nafion composite film-modified electrode and 3 orders of magnitude higher than that at pure Nafion films.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The possibility of the formation of Langmuir-Blodgett (LB) films with dimethyldioctadecylammonium (DODA) after the addition of cobalt(II)-substituted Dawson-type tungstodiphosphate anion (briefed as (H2O)(CoP2W17O618-)-P-11) in the subphase has been explored. Marked modifications of the compression isotherms are observed when this anion is dissolved in the subphase, which demonstrates that the polyanions interact with the monolayers. LB films have been readily obtained from this system. The adsorption Fourier transform IR (FT IR) spectroscopy, atomic force microscopy (AFM), X-ray diffraction (XRD) and cyclic voltammetry (CV) have been used to investigate the morphological and molecular structure of the deposited film. The FT IR results showed the presence of the polyanion within the LB films, and the shift for its characteristic bands may be related to the presence of positively charged DODA. AFM measurement reveals that the LB films of DODA/(H2O)(CoP2W17O618)-P-II are regularly and uniformly deposited on the substrate. XRD experiments prove that the lamellar structure of the LB films of DODA/(H2O)(CoP2W17O618-)-P-II is well-defined. The LB films of DODA/(H2O)(CoP2W17O618-)-P-II immobilized onto an indium-oxide (ITO) glass, in aqueous solutions of pH 2.0-5.0, show quite facile redox reactions even for multilayers. All the experiments carried out in the present study suggest that the new materials of heteropolyanions can be formed by LB techniques and beneficial physicochemical properties of heteropolyanions can be maintained/enhanced through molecular-level design. (C) 1999 Elsevier Science S.A. All rights reserved.