367 resultados para Neutrino


Relevância:

20.00% 20.00%

Publicador:

Resumo:

New data from the T2K neutrino oscillation experiment produce the most precise measurement of the neutrino mixing parameter θ 23 . Using an off-axis neutrino beam with a peak energy of 0.6 GeV and a data set corresponding to 6.57×10 20 protons on target, T2K has fit the energy-dependent ν μ oscillation probability to determine oscillation parameters. The 68% confidence limit on sin 2 (θ 23 ) is 0.514 +0.055 −0.056 (0.511±0.055 ), assuming normal (inverted) mass hierarchy. The best-fit mass-squared splitting for normal hierarchy is Δm 2 32 =(2.51±0.10)×10 −3   eV 2 /c 4 (inverted hierarchy: Δm 2 13 =(2.48±0.10)×10 −3   eV 2 /c 4 ). Adding a model of multinucleon interactions that affect neutrino energy reconstruction is found to produce only small biases in neutrino oscillation parameter extraction at current levels of statistical uncertainty.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The next generation neutrino observatory proposed by the LBNO collaboration will address fundamental questions in particle and astroparticle physics. The experiment consists of a far detector, in its first stage a 20 kt LAr double phase TPC and a magnetised iron calorimeter, situated at 2300 km from CERN and a near detector based on a highpressure argon gas TPC. The long baseline provides a unique opportunity to study neutrino flavour oscillations over their 1st and 2nd oscillation maxima exploring the L/E behaviour, and distinguishing effects arising from δCP and matter. In this paper we have reevaluated the physics potential of this setup for determining the mass hierarchy (MH) and discovering CP-violation (CPV), using a conventional neutrino beam from the CERN SPS with a power of 750 kW. We use conservative assumptions on the knowledge of oscillation parameter priors and systematic uncertainties. The impact of each systematic error and the precision of oscillation prior is shown. We demonstrate that the first stage of LBNO can determine unambiguously the MH to > 5δ C.L. over the whole phase space. We show that the statistical treatment of the experiment is of very high importance, resulting in the conclusion that LBNO has ~ 100% probability to determine the MH in at most 4-5 years of running. Since the knowledge of MH is indispensable to extract δCP from the data, the first LBNO phase can convincingly give evidence for CPV on the 3δ C.L. using today’s knowledge on oscillation parameters and realistic assumptions on the systematic uncertainties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The OPERA experiment is designed to search for ν μ →ν τ oscillations in appearance mode, i.e., through the direct observation of the τ lepton in ν τ -charged current interactions. The experiment has taken data for five years, since 2008, with the CERN Neutrino to Gran Sasso beam. Previously, two ν τ candidates with a τ decaying into hadrons were observed in a subsample of data of the 2008–2011 runs. Here we report the observation of a third ν τ candidate in the τ − →μ − decay channel coming from the analysis of a subsample of the 2012 run. Taking into account the estimated background, the absence of ν μ →ν τ oscillations is excluded at the 3.4 σ level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The putative recent indication of an unidentified 3.55 keV X-ray line in certain astrophysical sources is taken as a motivation for an improved theoretical computation of the cosmological abundance of 7.1 keV sterile neutrinos. If the line is interpreted as resulting from the decay of Warm Dark Matter, the mass and mixing angle of the sterile neutrino are known. Our computation then permits for a determination of the lepton asymmetry that is needed for producing the correct abundance via the Shi-Fuller mechanism, as well as for an estimate of the non-equilibrium spectrum of the sterile neutrinos. The latter plays a role in structure formation simulations. Results are presented for different flavour structures of the neutrino Yukawa couplings and for different types of pre-existing lepton asymmetries, accounting properly for the charge neutrality of the plasma and incorporating approximately hadronic contributions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The OPERA experiment was designed to search for νµ → ντ oscillations in appearance mode, i.e. by detecting the τ leptons produced in charged current ντ interactions. The experiment took data from 2008 to 2012 in the CERN Neutrinos to Gran Sasso beam. The observation of the νµ → ντ appearance, achieved with four candidate events in a subsample of the data, was previously reported. In this Letter, a fifth ντ candidate event, found in an enlarged data sample, is described. Together with a further reduction of the expected background, the candidate events detected so far allow us to assess the discovery of νµ → ντ oscillations in appearance mode with a significance larger than 5 σ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a measurement of the charged current interaction rate of the electron neutrino beam component of the beam above 1.5 GeV using the large fiducial mass of the T2K π0 detector. The predominant portion of the νe flux (∼85%) at these energies comes from kaon decays. The measured ratio of the observed beam interaction rate to the predicted rate in the detector with water targets filled is 0.89 ± 0.08 (stat.) ± 0.11 (sys.), and with the water targets emptied is 0.90 ± 0.09 (stat.) ± 0.13 (sys.). The ratio obtained for the interactions on water only from an event subtraction method is 0.87 ± 0.33 (stat.) ± 0.21 (sys.). This is the first measurement of the interaction rate of electron neutrinos on water, which is particularly of interest to experiments with water Cherenkov detectors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a measurement of the νµ charged current quasi-elastic cross-sections on carbon in the T2K on-axis neutrino beam. The measured charged current quasi-elastic cross-sections on carbon at mean neutrino energies of 1.94 GeV and 0.93 GeV are (11.95 ± 0.19(stat.) +1.82−1.47(syst.)) ×10^−39 cm^2/neutron, and (10.64 ± 0.37(stat.)+2.03−1.65(syst.)) × 10^−39 cm^2/neutron, respectively. These results agree well with the predictions of neutrino interaction models. In addition, we investigated the effects of the nuclear model and the multi-nucleon interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The OPERA experiment, exposed to the CERN to Gran Sasso νµ beam, collected data from 2008 to 2012. Four oscillated ντ Charged Current interaction candidates have been detected in appearance mode, which are consistent with νµ → ντ oscillations at the atmospheric ∆m^2 within the “standard” three-neutrino framework. In this paper, the OPERA ντ appearance results are used to derive limits on the mixing parameters of a massive sterile neutrino.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Tokai to Kamioka (T2K) long-baseline neutrino experiment consists of a muon neutrino beam, produced at the J-PARC accelerator, a near detector complex and a large 295 km distant far detector. The present work utilizes the T2K event timing measurements at the near and far detectors to study neutrino time of flight as function of derived neutrino energy. Under the assumption of a relativistic relation between energy and time of flight, constraints on the neutrino rest mass can be derived. The sub-GeV neutrino beam in conjunction with timing precision of order tens of ns provide sensitivity to neutrino mass in the few MeV/c^2 range. We study the distribution of relative arrival times of muon and electron neutrino candidate events at the T2K far detector as a function of neutrino energy. The 90% C.L. upper limit on the mixture of neutrino mass eigenstates represented in the data sample is found to be m^2 < 5.6 MeV^2/c^4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hyper-Kamiokande will be a next generation underground water Cherenkov detector with a total (fiducial) mass of 0.99 (0.56) million metric tons, approximately 20 (25) times larger than that of Super-Kamiokande. One of the main goals of HyperKamiokande is the study of CP asymmetry in the lepton sector using accelerator neutrino and anti-neutrino beams. In this paper, the physics potential of a long baseline neutrino experiment using the Hyper-Kamiokande detector and a neutrino beam from the J-PARC proton synchrotron is presented. The analysis uses the framework and systematic uncertainties derived from the ongoing T2K experiment. With a total exposure of 7.5 MW × 10⁷ s integrated proton beam power (corresponding to 1.56 × 10²² protons on target with a 30 GeV proton beam) to a 2.5-degree off-axis neutrino beam, it is expected that the leptonic CP phase δCP can be determined to better than 19 degrees for all possible values of δCP , and CP violation can be established with a statistical significance of more than 3 σ (5 σ) for 76% (58%) of the δCP parameter space. Using both νe appearance and νµ disappearance data, the expected 1σ uncertainty of sin²θ₂₃ is 0.015(0.006) for sin²θ₂₃ = 0.5(0.45).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on measurements of neutrino oscillation using data from the T2K long-baseline neutrino experiment collected between 2010 and 2013. In an analysis of muon neutrino disappearance alone, we find the following estimates and 68% confidence intervals for the two possible mass hierarchies: Normal Hierarchy: sin²θ₂₃= 0.514+0.055−0.056 and ∆m²_32 = (2.51 ± 0.10) × 10⁻³ eV²/c⁴ Inverted Hierarchy: sin²θ₂₃= 0.511 ± 0.055 and ∆m²_13 = (2.48 ± 0.10) × 10⁻³ eV²/c⁴ The analysis accounts for multi-nucleon mechanisms in neutrino interactions which were found to introduce negligible bias. We describe our first analyses that combine measurements of muon neutrino disappearance and electron neutrino appearance to estimate four oscillation parameters, |∆m^2|, sin²θ₂₃, sin²θ₁₃, δCP , and the mass hierarchy. Frequentist and Bayesian intervals are presented for combinations of these parameters, with and without including recent reactor measurements. At 90% confidence level and including reactor measurements, we exclude the region δCP = [0.15, 0.83]π for normal hierarchy and δCP = [−0.08, 1.09]π for inverted hierarchy. The T2K and reactor data weakly favor the normal hierarchy with a Bayes Factor of 2.2. The most probable values and 68% 1D credible intervals for the other oscillation parameters, when reactor data are included, are: sin²θ₂₃= 0.528+0.055−0.038 and |∆m²_32| = (2.51 ± 0.11) × 10⁻³ eV²/c⁴.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Tokai-to-Kamioka (T2K) neutrino experiment measures neutrino oscillations by using an almost pure muon neutrino beam produced at the J-PARC accelerator facility. The T2K muon monitor was installed to measure the direction and stability of the muon beam which is produced together with the muon neutrino beam. The systematic error in the muon beam direction measurement was estimated, using data and MC simulation, to be 0.28 mrad. During beam operation, the proton beam has been controlled using measurements from the muon monitor and the direction of the neutrino beam has been tuned to within 0.3 mrad with respect to the designed beam-axis. In order to understand the muon beam properties, measurement of the absolute muon yield at the muon monitor was conducted with an emulsion detector. The number of muon tracks was measured to be (4.06 ± 0.05) × 10⁴ cm⁻² normalized with 4 × 10¹¹protons on target with 250 kA horn operation. The result is in agreement with the prediction which is corrected based on hadron production data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a measurement of the νµ-nucleus inclusive charged current cross section (=σ cc) on ironusing data from exposed to the J-PARC neutrino beam. The detector consists of 14 modules in total, which are spread over a range of off-axis angles from 0◦ to 1.1◦. The variation in the neutrino energy spectrum as a function of the off-axis angle, combined with event topology information, is used to calculate this cross section as a function of neutrino energy. The cross section is measured to be σcc(1.1 GeV) = 1.10±0.15 (10^−38cm^2/nucleon), σcc(2.0 GeV) = 2.07±0.27 (10^−38cm^2/nucleon), and σcc(3.3 GeV) = 2.29 ± 0.45 (10^−38cm^2/nucleon), at energies of 1.1, 2.0, and 3.3 GeV, respectively. These results are consistent with the cross section calculated by the neutrino interaction generators currently used by T2K. More importantly, the method described here opens up a new way to determine the energy dependence of neutrino-nucleus cross sections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IMB (Irvine, Michigan, Brookline), a collaboration between the University of Michigan, the University of California at Irvine, and the U.S. Department of Energy, was an experiment designed to determine the ultimate stability of matter. One of eight events recorded by IMB during the few seconds that the neutrino pulse from SN1987a passed through the detector. View looking into the south wall.