962 resultados para Neuromuscular Blockade
Resumo:
De novo lipogenesis and hypercaloric diets are thought to contribute to increased fat mass, particularly in abdominal fat depots. CB1 is highly expressed in adipose tissue, and CB1-mediated signalling is associated with stimulation of lipogenesis and diet-induced obesity, though its contribution to increasing fat deposition in adipose tissue is controversial. Lipogenesis is regulated by transcription factors such as liver X receptor (LXR), sterol-response element binding protein (SREBP) and carbohydrate-responsive-element-binding protein (ChREBP). We evaluated the role of CB1 in the gene expression of these factors and their target genes in relation to lipogenesis in the perirenal adipose tissue (PrAT) of rats fed a high-carbohydrate diet (HCHD) or a high-fat diet (HFD). Both obesity models showed an up-regulated gene expression of CB1 and Lxrα in this adipose pad. The Srebf-1 and ChREBP gene expressions were down-regulated in HFD but not in HCHD. The expression of their target genes encoding for lipogenic enzymes showed a decrease in diet-induced obesity and was particularly dramatic in HFD. In HCHD, CB1 blockade by AM251 reduced the Srebf-1 and ChREBP expression and totally abrogated the remnant gene expression of their target lipogenic enzymes. The phosphorylated form of the extracellular signal-regulated kinase (ERK-p), which participates in the CB1-mediated signalling pathway, was markedly present in the PrAT of obese rats. ERK-p was drastically repressed by AM251 indicating that CB1 is actually functional in PrAT of obese animals, though its activation loses the ability to stimulate lipogenesis in PrAT of obese rats. Even so, the remnant expression levels of lipogenic transcription factors found in HCHD-fed rats are still dependent on CB1 activity. Hence, in HCHD-induced obesity, CB1 blockade may help to further potentiate the reduction of lipogenesis in PrAT by means of inducing down-regulation of the ChREBP and Srebf-1 gene expression, and consequently in the expression of lipogenic enzymes.
Resumo:
Toxic epidermal necrolysis (TEN, Lyell's syndrome) is a severe adverse drug reaction in which keratinocytes die and large sections of epidermis separate from the dermis. Keratinocytes normally express the death receptor Fas (CD95); those from TEN patients were found to express lytically active Fas ligand (FasL). Antibodies present in pooled human intravenous immunoglobulins (IVIG) blocked Fas-mediated keratinocyte death in vitro. In a pilot study, 10 consecutive individuals with clinically and histologically confirmed TEN were treated with IVIG; disease progression was rapidly reversed and the outcome was favorable in all cases. Thus, Fas-FasL interactions are directly involved in the epidermal necrolysis of TEN, and IVIG may be an effective treatment.
Hemodynamic consequences of chronic parasympathetic blockade with a peripheral muscarinic antagonist
Resumo:
Résumé Alors que le système nerveux sympathique a un rôle bien établi dans la régulation de la pression artérielle, l'influence de la fonction ou dysfonction du système parasympathique sur la pression artérielle n'est pas évidente, en particulier à long terme. Nous avons testé l'hypothèse que l'inhibition chronique du système parasympathique a un effet persistant sur la pression artérielle (PA), la fréquence cardiaque (FC) et la variabilité de la pression artérielle (VPA). Des rats de type Sprague Dawley ont été instrumentés pour monitoring de la pression artérielle 22h par jour par télémétrie et abrités dans des cages métaboliques. Après guérison de l'intervention et après une période contrôle de référence, de la scopolamine methyl bromide (SMB), un antagoniste muscarinique périphérique, a été perfusé i.v. pendant 12 jours. Le tout fut suivi d'une période de récupération de 10 jours. La SMB a entraîné une augmentation rapide de la PA de 98±2 mmHg à un maximum de 108±2 mmHg le deuxième jour de perfusion de la SMB puis la PA s'est stabilisée à une valeur plateau de +3±1 mmHg au dessus de la valeur contrôle (P < 0.05). Après l'arrêt de la perfusion de SMB, la PA moyenne a diminué de 6±1 mmHg. La FC a augmenté immédiatement et est restée significativement au dessus de la valeur contrôle le dernier jour de 1a perfusion de SMB. La SMB a également induit une diminution de la variabilité à court terme de la FC (au sein d'intervalles de 30 minutes et une augmentation de la variabilité à court terme et à long terme (entre intervalles de 30 minutes) de la PA. Ces données suggèrent que l'inhibition muscarinique périphérique chronique conduit à une augmentation modeste mais persistante de la PA, FC et VPA, qui sont des facteurs de risque cardiovasculaires connus.
Resumo:
PURPOSE: Neuromuscular electrical stimulation (NMES) with large electrodes and multiple current pathways (m-NMES) has recently been proposed as a valid alternative to conventional NMES (c-NMES) for quadriceps muscle (re)training. The main aim of this study was to compare discomfort, evoked force and fatigue between m-NMES and c-NMES of the quadriceps femoris muscle in healthy subjects. METHODS: Ten healthy subjects completed two experimental sessions (c-NMES and m-NMES), that were randomly presented in a cross-over design. Maximal electrically evoked force at pain threshold, self-reported discomfort at different levels of evoked force, and fatigue-induced force declines during and following a series of 20 NMES contractions were compared between c-NMES and m-NMES. RESULTS: m-NMES resulted in greater evoked force (P < 0.05) and lower discomfort in comparison to c-NMES (P < 0.05-0.001), but fatigue time course and magnitude did not differ between the two conditions. CONCLUSIONS: The use of quadriceps m-NMES appears legitimate for (re)training purposes because it generated stronger contractions and was less discomfortable than c-NMES (due to multiple current pathways and/or lower current density with larger electrodes).
Resumo:
Tasosartan is a long-acting angiotensin II (AngII) receptor blocker. Its long duration of action has been attributed to its active metabolite enoltasosartan. In this study we evaluated the relative contribution of tasosartan and enoltasosartan to the overall pharmacological effect of tasosartan. AngII receptor blockade effect of single doses of tasosartan (100 mg p.o. and 50 mg i.v) and enoltasosartan (2.5 mg i.v.) were compared in 12 healthy subjects in a randomized, double blind, three-period crossover study using two approaches: the in vivo blood pressure response to exogenous AngII and an ex vivo AngII radioreceptor assay. Tasosartan induced a rapid and sustained blockade of AngII subtype-1 (AT1) receptors. In vivo, tasosartan (p.o. or i.v.) blocked by 80% AT1 receptors 1 to 2 h after drug administration and still had a 40% effect at 32 h. In vitro, the blockade was estimated to be 90% at 2 h and 20% at 32 h. In contrast, the blockade induced by enoltasosartan was markedly delayed and hardly reached 60 to 70% despite the i.v. administration and high plasma levels. In vitro, the AT1 antagonistic effect of enoltasosartan was markedly influenced by the presence of plasma proteins, leading to a decrease in its affinity for the receptor and a slower receptor association rate. The early effect of tasosartan is due mainly to tasosartan itself with little if any contribution of enoltasosartan. The antagonistic effect of enoltasosartan appears later. The delayed in vivo blockade effect observed for enoltasosartan appears to be due to a high and tight protein binding and a slow dissociation process from the carrier.
Resumo:
An in vitro angiotensin II (AngII) receptor-binding assay was developed to monitor the degree of receptor blockade in standardized conditions. This in vitro method was validated by comparing its results with those obtained in vivo with the injection of exogenous AngII and the measurement of the AngII-induced changes in systolic blood pressure. For this purpose, 12 normotensive subjects were enrolled in a double-blind, four-way cross-over study comparing the AngII receptor blockade induced by a single oral dose of losartan (50 mg), valsartan (80 mg), irbesartan (150 mg), and placebo. A significant linear relationship between the two methods was found (r = 0.723, n = 191, P<.001). However, there exists a wide scatter of the in vivo data in the absence of active AngII receptor blockade. Thus, the relationship between the two methods is markedly improved (r = 0.87, n = 47, P<.001) when only measurements done 4 h after administration of the drugs are considered (maximal antagonist activity observed in vivo) suggesting that the two methods are equally effective in assessing the degree of AT-1 receptor blockade, but with a greatly reduced variability in the in vitro assay. In addition, the pharmacokinetic/pharmacodynamic analysis performed with the three antagonists suggest that the AT-1 receptor-binding assay works as a bioassay that integrates the antagonistic property of all active drug components of the plasma. This standardized in vitro-binding assay represents a simple, reproducible, and precise tool to characterize the pharmacodynamic profile of AngII receptor antagonists in humans.
Resumo:
The key role of intrarenal adenosine in mediating the hypoxemic acute renal insufficiency in newborn rabbits has been well demonstrated using the nonspecific adenosine antagonist theophylline. The present study was designed to define the role of adenosine A1 receptors during systemic hypoxemia by using the specific A1-receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). Renal function parameters were assessed in 31 anesthetized and mechanically ventilated newborn rabbits. In normoxia, DPCPX infusion induced a significant increase in diuresis (+44%) and GFR (+19%), despite a significant decrease in renal blood flow (RBF) (-22%) and an increase in renal vascular resistance (RVR) (+37%). In hypoxemic conditions, diuresis (-19%), GFR (-26%), and RBF (-35%) were decreased, whereas RVR increased (+33%). DPCPX administration hindered the hypoxemia-induced decrease in GFR and diuresis. However, RBF was still significantly decreased (-27%), whereas RVR increased (+22%). In all groups, the filtration fraction increased significantly. The overall results support the hypothesis that, in physiologic conditions, intrarenal adenosine plays a key role in regulating glomerular filtration in the neonatal period through preferential A1-mediated afferent vasoconstriction. During a hypoxemic stress, the A1-specific antagonist DPCPX only partially prevented the hypoxemia-induced changes, as illustrated by the elevated RVR and drop in RBF. These findings imply that the contribution of intrarenal adenosine to the acute adverse effects of hypoxemia might not be solely mediated via the A1 receptor.
Resumo:
The tumor microenvironment mediates induction of the immunosuppressive programmed cell death-1 (PD-1) pathway, and targeted interventions against this pathway can help restore antitumor immunity. To gain insight into these responses, we studied the interaction between PD-1 expressed on T cells and its ligands (PD-1:PD-L1, PD-1:PD-L2, and PD-L1:B7.1), expressed on other cells in the tumor microenvironment, using a syngeneic orthotopic mouse model of epithelial ovarian cancer (ID8). Exhaustion of tumor-infiltrating lymphocytes (TIL) correlated with expression of PD-1 ligands by tumor cells and tumor-derived myeloid cells, including tumor-associated macrophages (TAM), dendritic cells, and myeloid-derived suppressor cells (MDSC). When combined with GVAX or FVAX vaccination (consisting of irradiated ID8 cells expressing granulocyte macrophage colony-stimulating factor or FLT3 ligand) and costimulation by agonistic α-4-1BB or TLR 9 ligand, antibody-mediated blockade of PD-1 or PD-L1 triggered rejection of ID8 tumors in 75% of tumor-bearing mice. This therapeutic effect was associated with increased proliferation and function of tumor antigen-specific effector CD8(+) T cells, inhibition of suppressive regulatory T cells (Treg) and MDSC, upregulation of effector T-cell signaling molecules, and generation of T memory precursor cells. Overall, PD-1/PD-L1 blockade enhanced the amplitude of tumor immunity by reprogramming suppressive and stimulatory signals that yielded more powerful cancer control.
Resumo:
Pharmacological treatment of hypertension is effective in preventing cardiovascular and renal complications. Calcium antagonists (CAs) and blockers of the renin-angiotensin system [angiotensin-converting enzyme (ACE) inhibitors and angiotensin II antagonists (ARBs)] are widely used today to initiate antihypertensive treatment but, when given as monotherapy, do not suffice in most patients to normalise blood pressure (BP). Combining a CA and either an ACE-inhibitor or an ARB considerably increases the antihypertensive efficacy, but not at the expense of a deterioration of tolerability. Several fixed-dose combinations are available (CA + ACE-inhibitors: amlodipine + benazepril, felodipine + ramipril, verapamil + trandolapril; CA + ARB: amlodipine + valsartan). They are expected not only to improve BP control, but also to facilitate long-term adherence with antihypertensive therapy, thereby providing maximal protection against the cardiovascular and renal damage caused by high BP.
Resumo:
We compared the extent and origin of muscle fatigue induced by short-pulse-low-frequency [conventional (CONV)] and wide-pulse-high-frequency (WPHF) neuromuscular electrical stimulation. We expected CONV contractions to mainly originate from depolarization of axonal terminal branches (spatially determined muscle fiber recruitment) and WPHF contractions to be partly produced via a central pathway (motor unit recruitment according to size principle). Greater neuromuscular fatigue was, therefore, expected following CONV compared with WPHF. Fourteen healthy subjects underwent 20 WPHF (1 ms-100 Hz) and CONV (50 μs-25 Hz) evoked isometric triceps surae contractions (work/rest periods 20:40 s) at an initial target of 10% of maximal voluntary contraction (MVC) force. Force-time integral of the 20 evoked contractions (FTI) was used as main index of muscle fatigue; MVC force loss was also quantified. Central and peripheral fatigue were assessed by voluntary activation level and paired stimulation amplitudes, respectively. FTI in WPHF was significantly lower than in CONV (21,717 ± 11,541 vs. 37,958 ± 9,898 N·s P<0,001). The reductions in MVC force (WPHF: -7.0 ± 2.7%; CONV: -6.2 ± 2.5%; P < 0.01) and paired stimulation amplitude (WPHF: -8.0 ± 4.0%; CONV: -7.4 ± 6.1%; P < 0.001) were similar between conditions, whereas no change was observed for voluntary activation level (P > 0.05). Overall, our results showed a different motor unit recruitment pattern between the two neuromuscular electrical stimulation modalities with a lower FTI indicating greater muscle fatigue for WPHF, possibly limiting the presumed benefits for rehabilitation programs.
Resumo:
OBJECTIVE: Whole-body vibration (WBV) exercise is progressively adopted as an alternative therapeutic modality for enhancing muscle force and muscle activity via neurogenic potentiation. So far, possible changes in the recruitment patterns of the trunk musculature after WBV remain undetermined. The main objective of this study was to evaluate the short-term effects of a single WBV session on trunk neuromuscular responses in patients with chronic low back pain (cLBP) and healthy participants. METHODS: Twenty patients with cLBP and 21 healthy participants performed 10 trunk flexion-extensions before and after a single WBV session consisting of five 1-minute vibration sets. Surface electromyography (EMG) of erector spinae at L2-L3 and L4-L5 and lumbopelvic kinematic variables were collected during the trials. Data were analyzed using 2-way mixed analysis of variance models. RESULTS: The WBV session led to increased lumbar EMG activity during the flexion and extension phases but yielded no change in the quiet standing and fully flexed phases. Kinematic data showed a decreased contribution to the movement of the lumbar region in the second extension quartile. These effects were not different between patients with cLBP and healthy participants. CONCLUSIONS: Increased lumbar EMG activity after a single WBV session most probably results from potentiation effects of WBV on lumbar muscles reflex responses. Decreased EMG activity in full trunk flexion, usually observed in healthy individuals, was still present after WBV, suggesting that the ability of the spine stabilizing mechanisms to transfer the extension torque from muscles to passive structures was not affected.
Resumo:
Use of angiotensin (Ang) II AT1 receptor antagonists for treatment of hypertension is rapidly increasing, yet direct comparisons of the relative efficacy of antagonists to block the renin-angiotensin system in humans are lacking. In this study, the Ang II receptor blockade induced by the recommended starting dose of 3 antagonists was evaluated in normotensive subjects in a double-blind, placebo-controlled, randomized, 4-way crossover study. At 1-week intervals, 12 subjects received a single dose of losartan (50 mg), valsartan (80 mg), irbesartan (150 mg), or placebo. Blockade of the renin-angiotensin system was assessed before and 4, 24, and 30 hours after drug intake by 3 independent methods: inhibition of the blood pressure response to exogenous Ang II, in vitro Ang II receptor assay, and reactive changes in plasma Ang II levels. At 4 hours, losartan blocked 43% of the Ang II-induced systolic blood pressure increase; valsartan, 51%; and irbesartan, 88% (P<0.01 between drugs). The effect of each drug declined with time. At 24 hours, a residual effect was found with all 3 drugs, but at 30 hours, only irbesartan induced a marked, significant blockade versus placebo. Similar results were obtained when Ang II receptor blockade was assessed with an in vitro receptor assay and by the reactive rise in plasma Ang II levels. This study thus demonstrates that the first administration of the recommended starting dose of irbesartan induces a greater and longer lasting Ang II receptor blockade than that of valsartan and losartan in normotensive subjects.