982 resultados para Neural tube


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hyperthermia is teratogenic to human and animal embryos and induces mainly anomalies of the nervous system. However, the teratogenic mechanism is poorly understood. Mammalian embryos are known to switch from anaerobic to aerobic metabolism around the time of neural tube closure. This critical event might be sensitive to hyperthermia. The objective of the present study was to evaluate the ultrastructural changes of the mitochondria of the neuroepithelium (NE) of rat embryos following maternal exposure to hyperthermia. Pregnant rats were heat stressed for an hour on gestation day (GD) 9 and embryos were examined by electron microscopy on GD 10. NE presented extensive apoptosis. Intercellular junctions were weakened and copious cellular debris projected into the ventricle. The mitochondria were of diverse size and shape. Most of them were swollen and had short cristae and electron dense matrix. Hydropic changes were also observed in numerous mitochondria. Lipid-laden mitochondria were found in the apical portions of neuroblasts. The mesenchyme (ME) of heat-treated embryos showed paucity of cells and only as frequent apoptosis as the controls. Their mitochondria also showed changes similar to those of the NE. Additionally extensive lipid accumulation was observed in and in the vicinity of mitochondria, often surrounded by short strands of endoplasmic reticulum. Whereas mitochondrial pathology was associated with profound apoptosis in the NE, growth restriction and lipid accumulation accompanied mitochondrial changes in the ME. The results of this study indicate that the embryonic response to maternal heat shock is tissue-specific and morphologically distinct in this species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neogenin, a close relative of the axon guidance receptor Deleted in Colorectal Cancer (DCC), has been shown to be a receptor for members of the Netrin and Repulsive Guidance Molecule (RGM) families. While Netrin-l-Neogenin interactions result in a chernoattractive axon guidance response, the interaction between Neogenin and RGMa induces a chemorepulsive response. Evidence is now accumulating that Neogenin is a multi-functional receptor regulating many diverse developmental processes, including neural tube and mammary gland formation, myogenesis and angiogenesis. Little is known of the function of Neogenin in the adult, however, a novel role in the regulation of iron homeostasis is now emerging. While the signal transduction pathways activated by Neogenin are poorly understood, it is clear that the functional outcome of Neogenin activation, at least in the embryo, depends on both the developmental context as well as the nature of the ligand. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

1, During embryonic development, a diverse array of neurons and glia are generated at specific positions along the dorsoventral and rostro-caudal axes of the spinal cord from a common pool of precursor cells. 2. This cell type diversity can be distinguished by the spatially and temporally coordinated expression of several transcription factors that are also linked to cell type specification at a very early stage of spinal cord development. 3, Recent studies have started to uncover that the generation of cell type diversity in the developing spinal cord. Moreover, distinct cell types in the spinal cord appear to be determined by the spatially and temporally coordinated expression of transcription factors. 4. The expression of these factors also appears to be controlled by gradients of factors expressed by ventral and dorsal midline cells, namely Sonic hedgehog and members of the transforming growth factor-beta family. 5, Changes in the competence of precursor cells and local cell interactions may also play important roles in cell type specification within the developing spinal cord.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Endothelin 3 (Edn3) is a ligand important to developing neural crest cells (NCC). Some NCC eventually migrate into the skin and give rise to the pigment-forming melanocytes found in hair follicles. Edn3's effects on NCC have been largely explored through spontaneous mutants and cell culture experiments. These studies have shown the Endothelin receptor B/Edn3 signaling pathway to be important in the proliferation/survival and differentiation of developing melanocytes. To supplement these investigations I have created doxycycline-responsive transgenic mice which conditionally over-express Edn3. These mice will help us clarify Edn3's role during the development of early embryonic melanoblasts, differentiating melanocyte precursors in the skin, and fully differentiated melanocytes in the hair follicle. The transgene mediated expression of Edn3 was predominantly confined to the roof plate of the neural tube and surface ectoderm in embryos and postnatally in the epidermal keratinocytes of the skin. Relative to littermate controls, transgenics develop increased pigmentation on most areas of the skin. My doxycycline-based temporal studies have shown that both embryonic and postnatal events are important for establishing and maintaining pigmented skin. The study of my Edn3 transgenic mice may offer some insight into the genetics behind benign dermal pigmentation and offer clues about the time periods important in establishing these conditions. This apparently abnormal development is echoed in a benign condition of human skin. Cases of dermal melanocytosis, such as common freckles, Mongolian spotting, and nevus of Ito demonstrate histological and etiological characteristics similar to those of the transgenic mice generated in this study.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Neural Crest (NC) is a multipotential group of cells that arises from the dorsal aspect of the neural tube early in development. It is well established that a group of NC cells named Cardiac Neural Crest (CNC) migrates to the heart and plays a critical role in the remodeling of the aortic arch arteries and septation of the outflow tract. In this study, using the mouse mutant Pax3sp/sp that has CNC deficits I have identified a putative novel role for the CNC in regulating apoptosis in the atrioventricular (AV) endocardial cushion. The AV endocardial cushion undergoes remodeling to give rise to the cardiac AV valves. Using a transgenic mouse that carries the LacZ reporter gene under the control of the Dopachrome tautomerase promoter (Dct-LacZ), I found that another NC derived population, melanocyte precursors, also contribute to the AV endocardial cushion and developing AV valves. The analysis of Dct-LacZ embryos at different stages showed that NC cells already committed to the melanocytic fate migrate to the heart along the same initial pathway taken by those that will populate the skin. Hypopigmented mice carrying mutations in the Kit and Endothelin receptor b genes, that are critical for the proper development of skin melanocytes, do not have cardiac melanocytes indicating that cardiac and skin melanocyte precursors share the same initial signaling requirements. The analysis of murine adult hearts showed that melanocytes are mostly found in the atrial sides of the tricuspid and mitral valve leaflets. The distribution of melanocytes in the AV valves corresponds exactly to areas of high Versican B expression, a proteoglycan essential for the process of AV valve remodeling. To evaluate a potential role for melanocytes in the AV valves, a nanoindentation analysis of the tricuspid valves of wild type, hypopigmented and hyperpigmented mice was performed. The storage modulus, a measure of stiffness, for the leaflets obtained from hyperpigmented mice was considerably higher (10.5GPa) than that for the leaflets from wild type (7.5GPa) and hypopigmented animals (between 3.5 and 5.5 GPa) suggesting that melanocytes may contribute to the mechanical properties of the AV valves.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Endothelin-3 (Edn3) has been shown to be an essential environmental cue in melanocyte development. Edn3 and its receptor, EdnrB, are allelic to mouse mutations occurring at the lethal spotting and piebald loci, respectively; these mutations result in hypopigmentation phenotypes. Mutations in the genes for both Edn3 and EdnrB are implicated in human pigmentation disorders such as Waardenburg-Shah syndrome, which is characterized by pigmentation defects, deafness, and megacolon. In this study, a tetracycline-inducible transgenic mouse model that overexpresses Edn3 under the control of the Keratin 5 promoter was shown to produce a hyperpigmentation phenotype that decreases over time. The expression pattern of transgenic Edn3 and its effects on the melanocyte population were examined in transgenic embryos, postnatal skin, and the skin of adult mice that exhibit faded hyperpigmentation. These studies suggest that overexpression of Edn3 in this model is restricted primarily to the roof plate of the neural tube and surface ectoderm in the developing embryo and to keratinocytes in the epidermis of postnatal mice. A decline in transgenic expression and a reduction in the dermal melanocytes and free melanin that characterize the phenotype in juvenile mice were shown to correlate with the fading of the hyperpigmentation phenotype. Transgenic mice in which transgenic expression was repressed (resulting in the disappearance of the hyperpigmentation phenotype) also exhibited a decrease in the dermal melanocyte population. The Edn3-overexpressing mice used in this study might be helpful m understanding human skin conditions characterized by dermal melanocytosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neural crest cells (NCC) are a unique population of cells in vertebrates that arise between the presumptive epidermis and the dorsal most region of the neural tube. During neurulation, NCC migrate to many regions of the body to give rise to a wide variety of cell types. NCC that originate from the neural tube at the levels of somite 1-7 colonize the gut and give rise to the enteric ganglia. The endothelin signaling pathway has been shown to be crucial for proper development of some neural crest derivatives. Mice and humans with mutations in the Endothelin receptor b (Ednrb) gene exhibit similar phenotypes characterized by hypopigmentation, hearing loss, and megacolon. Thesephenotypes are due to lack of melanocytes in the skin, inner ear and enteric ganglia in the distal portion of the colon, respectively. It is well established that Ednrb is required early during the embryonic development for normal innervation of the gut. However, it is not clear if Ednrb acts on enteric neuron precursor cells or in pre-committed NC precursors. Additionally, it is controversial whether the action of Ednrb is cell autonomous or non- autonomous. We generated transgenic mice that express Ednrb under the control of the Nestin second intron enhancer (Nes) which drives expression to pre-migrating NCC. These mice were crosses to the spontaneous mouse mutant piebald lethal, which carriers a null mutation in Ednrb and exhibits enteric aganglionosis. The Nes-Ednrb was capable of rescuing the aganglianosis phenotype of piebald lethal mutants demonstrating that expression of Ednrb in pre-committed precursors is sufficient for normal enteric ganglia development. This study provides insight in early embryonic development of NCC and could eventually have potential use in cellular therapies for Hirschsprung's disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wnt signaling plays a vital role in many developmental processes. Wnt signaling has been implicated in neural crest induction and cell differentiation among other functions. In mice Wnts comprise a family of nineteen glycoproteins that bind to Frizzled (Fzd) receptors and LRP5/6 co-receptors. This activates beta-catenin, which translocates into the nucleus and acts as a transcription factor, resulting in differential gene expression. Specifically, Fzd 3 enhances Wnt 1 signaling. Wnt 1 and Fzd 3 are involved in neural crest induction and in neural crest-derived melanocyte development. We analyzed the expression pattern ofFzd 3 and the LRP 5/6 by in situ hybridization inmouse embryos. Our data suggests a role for these genes in neural crest induction and in melanocyte differentiation in the murine system. Results show Fzd 3 expression in the anterior part of the neural tube and in the hindbrain, while LRP 5 is expressed in the anterior part of the neural tube, in the hindbrain, and in the eye. We conclude that Fzd 3 and LRP 5 are expressed in the neural crest. In addition, Fzd 3 might act as the receptor while LRP 5 might act as the co-receptor for Wntl signaling in the murine system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Melanocytes, pigment-producing cells, derive from the neural crest (NC), a population of pluripotent cells that arise from the dorsal aspect of the neural tube during embryogenesis. Many genes required for melanocyte development were identified using mouse pigmentation mutants. The deletion of the transcription factor Ets1 in mice results in hypopigmentation; nevertheless, the function of Ets1 in melanocyte development is unknown. The goal of the present study was to establish the temporal requirement and role of Ets1 in murine melanocyte development. In the mouse, Ets1 is widely expressed in developing organs and tissues, including the NC. In the chick cranial NC, Ets1 is required for the expression of Sox10, a transcription factor critical for the development of melanocytes, enteric ganglia, and other NC derivatives. ^ Using a combination of immunofluorescence and cell survival assays Ets1 was found to be required between embryonic days 10 and 11, when it regulates NC cell and melanocyte precursor (melanoblast) survival. Given the requirement of Ets1 for Sox10 expression in the chick cranial NC, a potential interaction between these genes was investigated. Using genetic crosses, a synergistic genetic interaction between Ets1 and Sox10 in melanocyte development was found. Since Sox10 is essential for enteric ganglia formation, the importance of Ets1 on gut innervation was also examined. In mice, Ets1 deletion led to decreased gut innervation, which was exacerbated by Sox10 heterozygosity. ^ At the molecular level, Ets1 was found to activate a Sox10 enhancer critical for Sox10 expression in melanoblasts. Furthermore, mutating Ets1 at a site I characterized in the spontaneous variable spotting mouse pigmentation mutant, led to a 2-fold decrease in enhancer activation. Overexpression and knockdown of Ets1 did not affect Sox10 expression; nonetheless, Ets1 knockdown led to a 6-fold upregulation of the transcription factor Sox9, a gene required for melanocyte and chondrocyte development, but which impairs melanocyte development when its expression is prolonged. Together, these results suggest that Ets1 is required early during melanocyte development for NC cell and melanoblast survival, possibly acting upstream of Sox10. The transcription factor Ets1 may also act indirectly in melanocyte fate specification by repressing Sox9 expression, and consequently cartilage fate.^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Valproic acid (VPA), a commonly-used anticonvulsant drug, is associated with increased risk of fetal malformations, including neural tube defects (NTDs). Previous in vivo studies determined that VPA-exposed embryos with a NTD had altered expression of several proteins regulated by p300, a histone acetyltransferase (HAT) protein. p300 is capable of acetylating histones and non-histone proteins through its HAT activity, allowing it to transcriptionally regulate genes as well as modulate the stability and activity of specific proteins. NFκB, Stat3 and Egr1, all of which function as transcription factors, are regulated by p300 through its HAT activity. Together, these proteins all play an important role in maintaining the balance of apoptosis, proliferation and differentiation, the regulation of which is extremely important for proper embryonic development. The studies in this thesis utilized P19 embryonal carcinoma (EC) cells in order to determine the effects of VPA exposure on the expression of p300 and the aforementioned transcription factors, as well as apoptosis and proliferation, in vitro. P19 EC cells were exposed to C646, a selective p300 inhibitor, in order to assess whether the effects observed as a result of VPA exposure were due to p300 protein degradation. It was found that VPA exposure for 24 hours in P19 EC cells in vitro resulted in a significant decrease in p300 protein expression. VPA exposure also significantly decreased NFκB protein expression, while resulting in increased Stat3 protein expression. However, Stat3 acetylation and phosphorylation, which both contribute to Stat3 activation, were significantly decreased as a result of VPA exposure. p300 inhibition resulted in a significant decrease in NFκB, similar to what was observed as a result of VPA exposure, which suggests that VPA-mediated degradation of p300 may play a role in reduced NFκB protein expression following VPA exposure. Conversely, Stat3 protein expression, acetylation and phosphorylation were not significantly changed as a result of p300 inhibition, suggesting that p300 degradation does not play a role in VPA’s effects on Stat3 protein expression and activation. VPA exposure also resulted in a significant increase in apoptosis, while p300 inhibition did not significantly increase apoptosis. These data suggest that p300 degradation plays a role in VPA-mediated teratogenicity, and that VPA may target other cellular mechanisms in order to exert its teratogenic effects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exposure to the antiepileptic drug valproic acid (VPA) is associated with an increased risk of congenital malformations including heart, skeletal and most frequently neural tube defects. Although the mechanisms contributing to its teratogenesis are not well understood, VPA was previously shown to increase homologous recombination (HR)-mediated DNA repair and decrease protein expression of the transcription factor NF-κB/p65. The studies in this thesis utilized in vivo and in vitro models to evaluate the expression of HR mediators, investigate the implications of decreased p65 including DNA binding and transcriptional activation, and the expression and histone acetyltransferase activity of Cbp/p300 with an aim to provide mechanistic insight into VPA-mediated alterations. The first study demonstrated that following maternal administration of VPA, mouse embryonic mRNA expression of HR mediators Rad51, Brca1 and Brca2 exhibited temporal and tissue-specific alterations. Protein expression of Rad51 was similarly altered and preceded increased cleavage of caspase-3 and PARP; indicative of apoptosis. The second study confirms previous findings of decreased total cellular p65 protein using P19 cells, but is the first to demonstrate that nuclear p65 protein is unchanged. NF-κB DNA binding was decreased following VPA exposure and maybe mediated by decreased p50 protein, which dimerizes with p65 prior to DNA binding. Transcriptional activity of NF-κB was also increased with VPA exposure which was not due to increased p65 phosphorylation at Ser276. Furthermore, the transcriptional activation capacity was unaffected by VPA exposure as combined exposure to VPA and TNFα additively increased NF-κB activity. The third study demonstrated that VPA exposure in P19 cells decreased Cbp/p300 total cellular and nuclear protein attributed primarily to ubiquitin proteasome-mediated degradation. Histone acetyltransferase (HAT) activity of p300 was decreased proportionately to nuclear protein following VPA exposure. Inhibition of Cbp/p300 HAT activity decreased p65 total cellular protein, increased caspase-3 cleavage and ROS similar to VPA exposures. Furthermore, pre-treatment with the antioxidant enzyme catalase attenuated the increase in caspase-3 cleavage, but not p65 protein. Overall, this thesis demonstrates that VPA exposure impacts the expression and activity of the transcription factor NF-κB and transcriptional co-activators/HATs Cbp/p300, which has implications for downstream VPA targets including Rad51, Brca1 and Brca2.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pour ce projet, nous avons développé une plateforme pour l’analyse pangénomique de la méthylation de l’ADN chez le bovin qui est compatible avec des échantillons de petites tailles. Cet outil est utilisé pour étudier les caractéristiques génétiques et épigénétiques (méthylation de l’ADN) des gamètes soumis aux procédures de procréation médicalement assisitée et des embryons précoces. Dans un premier temps, une plateforme d’analyse de biopuces spécifiques pour l’étude de la méthylation de l’ADN chez l’espèce bovine a été développée. Cette plateforme a ensuite été optimisée pour produire des analyses pangénomiques de méthylation de l’ADN fiables et reproductibles à partir d’échantillons de très petites tailles telle que les embryons précoces (≥ 10 ng d’ADN a été utilisé, ce qui correspond à 10 blastocystes en expansion). En outre, cet outil a permis d’évaluer de façon simultanée la méthylation de l’ADN et le transcriptome dans le même échantillon, fournissant ainsi une image complète des profils génétiques et épigénétiques (méthylation de l’ADN). Comme preuve de concept, les profils comparatifs de méthylation de l’ADN spermatique et de blastocystes bovins ont été analysés au niveau de l’ensemble du génome. Dans un deuxième temps, grâce à cette plateforme, les profils globaux de méthylation de l’ADN de taureaux jumeaux monozygotes (MZ) ont été analysés. Malgré qu’ils sont génétiquement identiques, les taureaux jumeaux MZ ont des descendants avec des performances différentes. Par conséquent, l’hypothèse que le profil de méthylation de l’ADN spermatique de taureaux jumeaux MZ est différent a été émise. Dans notre étude, des différences significatives entre les jumeaux MZ au niveau des caractéristiques de la semence ainsi que de la méthylation de l’ADN ont été trouvées, chacune pouvant contribuer à l’obtention de performances divergentes incongrues des filles engendrées par ces jumeaux MZ. Dans la troisième partie de ce projet, la même plateforme a été utilisée pour découvrir les impacts d’une supplémentation à forte concentration en donneur de méthyle universel sur les embryons précoces bovins. La supplémentation avec de grandes quantités d’acide folique (AF) a été largement utilisée et recommandée chez les femmes enceintes pour sa capacité bien établie à prévenir les malformations du tube neural chez les enfants. Cependant, plus récemment, plusieurs études ont rapporté des effets indésirables de l’AF utilisé à des concentrations élevées, non seulement sur le développement de l’embryon, mais aussi chez les adultes. Au niveau cellulaire, l’AF entre dans le métabolisme monocarboné, la seule voie de production de S-adénosyl méthionine (SAM), un donneur universel de groupements méthyles pour une grande variété de biomolécules, y compris l’ADN. Par conséquent, pour résoudre cette controverse, une forte dose de SAM a été utilisée pour traiter des embryons produits in vitro chez le bovin. Ceci a non seulement permis d’influencer le phénotype des embryons précoces, mais aussi d’avoir un impact sur le transcriptome et le méthylome de l’ADN. En somme, le projet en cours a permis le développement d’une plateforme d’analyse de la méthylation de l’ADN à l’échelle du génome entier chez le bovin à coût raisonnable et facile à utiliser qui est compatible avec les embryons précoces. De plus, puisque c’est l’une des premières études de ce genre en biologie de la reproduction bovine, ce projet avait trois objectifs qui a donné plusieurs nouveaux résultats, incluant les profils comparatifs de méthylation de l’ADN au niveau : i) blastocystes versus spermatozoïdes ; ii) semence de taureaux jumeaux MZ et iii) embryons précoces traités à de fortes doses de SAM versus des embryons précoces non traités.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Melanocytes, pigment-producing cells, derive from the neural crest (NC), a population of pluripotent cells that arise from the dorsal aspect of the neural tube during embryogenesis. Many genes required for melanocyte development were identified using mouse pigmentation mutants. The deletion of the transcription factor Ets1 in mice results in hypopigmentation; nevertheless, the function of Ets1 in melanocyte development is unknown. The goal of the present study was to establish the temporal requirement and role of Ets1 in murine melanocyte development. In the mouse, Ets1 is widely expressed in developing organs and tissues, including the NC. In the chick cranial NC, Ets1 is required for the expression of Sox10, a transcription factor critical for the development of melanocytes, enteric ganglia, and other NC derivatives. Using a combination of immunofluorescence and cell survival assays Ets1 was found to be required between embryonic days 10 and 11, when it regulates NC cell and melanocyte precursor (melanoblast) survival. Given the requirement of Ets1 for Sox10 expression in the chick cranial NC, a potential interaction between these genes was investigated. Using genetic crosses, a synergistic genetic interaction between Ets1 and Sox10 in melanocyte development was found. Since Sox10 is essential for enteric ganglia formation, the importance of Ets1 on gut innervation was also examined. In mice, Ets1 deletion led to decreased gut innervation, which was exacerbated by Sox10 heterozygosity. At the molecular level, Ets1 was found to activate a Sox10 enhancer critical for Sox10 expression in melanoblasts. Furthermore, mutating Ets1 at a site I characterized in the spontaneous variable spotting mouse pigmentation mutant, led to a 2-fold decrease in enhancer activation. Overexpression and knockdown of Ets1 did not affect Sox10 expression; nonetheless, Ets1 knockdown led to a 6-fold upregulation of the transcription factor Sox9, a gene required for melanocyte and chondrocyte development, but which impairs melanocyte development when its expression is prolonged. Together, these results suggest that Ets1 is required early during melanocyte development for NC cell and melanoblast survival, possibly acting upstream of Sox10. The transcription factor Ets1 may also act indirectly in melanocyte fate specification by repressing Sox9 expression, and consequently cartilage fate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Nerve allografting is regarded as a treatment of choice in large neural tissue losses preventing repair by primary anastomosis. In these cases, a synthetic polyglycolic acid tube is an alternative for nerve grafting. On the other hand, several studies have emphasized the importance of neurotrophic factors on neural regeneration, including substances with potential to optimize neural regeneration, especially the GM1, an neurotrophic enhancer factor. Objective: to compare, in rats, the neural regeneration degree using histological analysis, regenerated myelinized axons count, and functional analysis with the use of neurotube and GM1. Methods: This assessment was performed by interposing allograft (group A), polyglycolic acid tube (group B) and polyglycolic acid tube associated to GM1 (group C) on 5-mm sciatic nerve defects. Results: Neuroma formation was found only on group A. Groups A and C showed similar histological patterns, except for the regenerated axons on group C, which were shown to be better organized and myelinized than in group A. Conclusion: on functional recovery, no statistically significant difference was found for the three groups, despite of qualitative and quantitative histological differences found.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents an investigation into the use of the finite element method and artificial neural networks in the identification of defects in industrial plants metallic tubes, due to the aggressive actions of the fluids contained by them, and/or atmospheric agents. The methodology used in this study consists of simulating a very large number of defects in a metallic tube, using the finite element method. Both variations in width and height of the defects are considered. Then, the obtained results are used to generate a set of vectors for the training of a perceptron multilayer artificial neural network. Finally, the obtained neural network is used to classify a group of new defects, simulated by the finite element method, but that do not belong to the original dataset. The reached results demonstrate the efficiency of the proposed approach, and encourage future works on this subject.