841 resultados para Natural language generation


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The article briefly reviews bilingual Slovak-Bulgarian/Bulgarian-Slovak parallel and aligned corpus. The corpus is collected and developed as results of the collaboration in the frameworks of the joint research project between Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, and Ľ. Štúr Institute of Linguistics, Slovak Academy of Sciences. The multilingual corpora are large repositories of language data with an important role in preserving and supporting the world's cultural heritage, because the natural language is an outstanding part of the human cultural values and collective memory, and a bridge between cultures. This bilingual corpus will be widely applicable to the contrastive studies of the both Slavic languages, will also be useful resource for language engineering research and development, especially in machine translation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Storyline detection from news articles aims at summarizing events described under a certain news topic and revealing how those events evolve over time. It is a difficult task because it requires first the detection of events from news articles published in different time periods and then the construction of storylines by linking events into coherent news stories. Moreover, each storyline has different hierarchical structures which are dependent across epochs. Existing approaches often ignore the dependency of hierarchical structures in storyline generation. In this paper, we propose an unsupervised Bayesian model, called dynamic storyline detection model, to extract structured representations and evolution patterns of storylines. The proposed model is evaluated on a large scale news corpus. Experimental results show that our proposed model outperforms several baseline approaches.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This presentation summarizes experience with the automated speech recognition and translation approach realised in the context of the European project EMMA.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The overwhelming amount and unprecedented speed of publication in the biomedical domain make it difficult for life science researchers to acquire and maintain a broad view of the field and gather all information that would be relevant for their research. As a response to this problem, the BioNLP (Biomedical Natural Language Processing) community of researches has emerged and strives to assist life science researchers by developing modern natural language processing (NLP), information extraction (IE) and information retrieval (IR) methods that can be applied at large-scale, to scan the whole publicly available biomedical literature and extract and aggregate the information found within, while automatically normalizing the variability of natural language statements. Among different tasks, biomedical event extraction has received much attention within BioNLP community recently. Biomedical event extraction constitutes the identification of biological processes and interactions described in biomedical literature, and their representation as a set of recursive event structures. The 2009–2013 series of BioNLP Shared Tasks on Event Extraction have given raise to a number of event extraction systems, several of which have been applied at a large scale (the full set of PubMed abstracts and PubMed Central Open Access full text articles), leading to creation of massive biomedical event databases, each of which containing millions of events. Sinece top-ranking event extraction systems are based on machine-learning approach and are trained on the narrow-domain, carefully selected Shared Task training data, their performance drops when being faced with the topically highly varied PubMed and PubMed Central documents. Specifically, false-positive predictions by these systems lead to generation of incorrect biomolecular events which are spotted by the end-users. This thesis proposes a novel post-processing approach, utilizing a combination of supervised and unsupervised learning techniques, that can automatically identify and filter out a considerable proportion of incorrect events from large-scale event databases, thus increasing the general credibility of those databases. The second part of this thesis is dedicated to a system we developed for hypothesis generation from large-scale event databases, which is able to discover novel biomolecular interactions among genes/gene-products. We cast the hypothesis generation problem as a supervised network topology prediction, i.e predicting new edges in the network, as well as types and directions for these edges, utilizing a set of features that can be extracted from large biomedical event networks. Routine machine learning evaluation results, as well as manual evaluation results suggest that the problem is indeed learnable. This work won the Best Paper Award in The 5th International Symposium on Languages in Biology and Medicine (LBM 2013).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The current study is a post-hoc analysis of data from the original randomized control trial of the Play and Language for Autistic Youngsters (PLAY) Home Consultation program, a parent-mediated, DIR/Floortime based early intervention program for children with ASD (Solomon, Van Egeren, Mahone, Huber, & Zimmerman, 2014). We examined 22 children from the original RCT who received the PLAY program. Children were split into two groups (high and lower functioning) based on the ADOS module administered prior to intervention. Fifteen-minute parent-child video sessions were coded through the use of CHILDES transcription software. Child and maternal language, communicative behaviors, and communicative functions were assessed in the natural language samples both pre- and post-intervention. Results demonstrated significant improvements in both child and maternal behaviors following intervention. There was a significant increase in child verbal and non-verbal initiations and verbal responses in whole group analysis. Total number of utterances, word production, and grammatical complexity all significantly improved when viewed across the whole group of participants; however, lexical growth did not reach significance. Changes in child communicative function were especially noteworthy, and demonstrated a significant increase in social interaction and a significant decrease in non-interactive behaviors. Further, mothers demonstrated an increase in responsiveness to the child’s conversational bids, increased ability to follow the child’s lead, and a decrease in directiveness. When separated for analyses within groups, trends emerged for child and maternal variables, suggesting greater gains in use of communicative function in both high and low groups over changes in linguistic structure. Additional analysis also revealed a significant inverse relationship between maternal responsiveness and child non-interactive behaviors; as mothers became more responsive, children’s non-engagement was decreased. Such changes further suggest that changes in learned skills following PLAY parent training may result in improvements in child social interaction and language abilities.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissertação de Mestrado, Processamento de Linguagem Natural e Indústrias da Língua, Faculdade de Ciências Humanas e Sociais, Universidade do Algarve, 2014

Relevância:

90.00% 90.00%

Publicador:

Resumo:

O processamento de linguagem natural e as ontologias são ferramentas cuja interação permite uma melhor compreensão dos dados armazenados. Este trabalho, ao associar estas duas áreas aos elementos disponíveis numa base de dados prosopográfica, tornou possível identificar e classificar relacionamentos entre setores de ocupação na forma como eram designados na época, setores de atividade num formato mais próximo do de hoje e o estatuto social que essas incumbências tinham na sociedade coeva. Os dados utilizados são sobretudo de membros do Santo Ofício – do século XVI ao século XVIII. Para atingir este objetivo utilizaram-se algumas descrições textuais de ocorrências da época e outras pouco estruturadas, disponíveis no repositório SPARES. A aplicação de processamento de linguagem natural (remoção de stopwords e aplicação de stemming), conjugada com a construção de duas ontologias, tornou possível classificar esses dados, permitindo consultas mais eficazes. Ao contribuir para a classificação automática de dados históricos, propõem-se metodologias que podem ser aplicadas em dados de qualquer outra área do conhecimento, especialmente as que lidam com as variáveis de tempo e espaço de forma mais intensa; Abstract: OntoSPARES: from natural language to ontologies Contributions to the automatic classification of historical data (16th-18th centuries) The interaction between the natural language processing and ontologies are tools allowing a better understanding of the data stored. This work, by combining these two areas to the elements available in a prosopographic database, has made possible to identify and classify relationships between occupations of many individuals (in general Holy Office members of the 16th-18th centuries). To achieve this goal the data used was gathered in SPARES repository, including some textual descriptions of the time occurrences. They are all few structured. The application of natural language processing (stopwords removal and stemming application), combined with the construction of two ontologies, made possible to classify those data, allowing a more effective search. By contributing to the automatic classification of historical data, this thesis proposes methodologies that can be applied to data from any other field of knowledge, specially data dealing with time and space variables.

Relevância:

80.00% 80.00%

Publicador: