996 resultados para Natural Incubation
C14 uptake rates and chlorophyll content from incubation experiment L1C018 at station DI182_11864#43
C14 uptake rates and chlorophyll content from incubation experiment L2C003 at station DI183_11869#29
Resumo:
Experimental lemurs either were infected orally with the agent of bovine spongiform encephalopathy (BSE) or were maintained as uninfected control animals. Immunohistochemical examination for proteinase-resistant protein (prion protein or PrP) was performed on tissues from two infected but still asymptomatic lemurs, killed 5 months after infection, and from three uninfected control lemurs. Control tissues showed no staining, whereas PrP was detected in the infected animals in tonsil, gastrointestinal tract and associated lymphatic tissues, and spleen. In addition, PrP was detected in ventral and dorsal roots of the cervical spinal cord, and within the spinal cord PrP could be traced in nerve tracts as far as the cerebral cortex. Similar patterns of PrP immunoreactivity were seen in two symptomatic and 18 apparently healthy lemurs in three different French primate centers, all of which had been fed diets supplemented with a beef protein product manufactured by a British company that has since ceased to include beef in its veterinary nutritional products. This study of BSE-infected lemurs early in their incubation period extends previous pathogenesis studies of the distribution of infectivity and PrP in natural and experimental scrapie. The similarity of neuropathology and PrP immunostaining patterns in experimentally infected animals to those observed in both symptomatic and asymptomatic animals in primate centers suggests that BSE contamination of zoo animals may have been more widespread than is generally appreciated.
Resumo:
Granzyme (Gzm) B-deficient mice obtained by gene targeting were used to assess the role of Gzm B in the mechanisms used by natural killer (NK) and lymphokine-activated killer (LAK) cells to destroy target cells. Gzm B-/- NK cells, LAK cells, and cytotoxic T lymphocytes (CTL) all are defective in their ability to rapidly induce DNA fragmentation/apoptosis in susceptible target cells. This defect can be partially corrected with long incubation times of effector and target cells. Moreover, Gzm B-/- NK cells (but not CTL or LAK cells) exhibit a defect in 51Cr release from susceptible target cells. This 51Cr release defect in Gzm B-deficient NK cells is also not overcome by prolonged incubation times or high effector-to-target cell ratios. We conclude that Gzm B plays a critical and nonredundant role in the rapid induction of DNA fragmentation/apoptosis by NK cells, LAK cells, and CTL. Gzm B may have an additional role in NK cells (but not in CTL or LAK cells) for mediating 51Cr release.
Resumo:
In order to investigate production pathways of methyl iodide and controls on emissions from the surface ocean, a set of repeated in-vitro incubation experiments were performed over an annual cycle in the context of a time-series of in-situ measurements in Kiel Fjord (54.3 N, 10.1E). The incubation experiments revealed a diurnal variation of methyl iodide in samples exposed to natural light, with maxima during day time and losses during night hours. The amplitude of the daily accumulation varied seasonally and was not affected by filtration (0.2µm), consistent with a photochemical pathway for CH3I production. The methyl iodide loss rate during night time correlated with the concentration accumulated during daytime. Daily (24 hour) net production (Pnet) was similar in magnitude between in vitro and in situ mass balances. However, the estimated gross production (Pgross) of methyl iodide ranged from -0.07 to 2.24 pmol/day and were 5 times higher in summer than Pnet calculated from the in-situ study [Shi et al., 2014]. The large excess of Pgross over Pnet revealed by the in-vitro (incubation) experiments in summer is a consequence of large losses of CH3I by as-yet uncharacterized processes (e.g. biological degradation or chemical pathways other than Cl- substitution).
Changing Bacterial Growth Efficiencies across a Natural Nutrient Gradient in an Oligotrophic Estuary
Resumo:
Recent studies have characterized coastal estuarine systems as important components of the global carbon cycle. This study investigated carbon cycling through the microbial loop of Florida Bay by use of bacterial growth efficiency calculations. Bacterial production, bacterial respiration, and other environmental parameters were measured at three sites located along a historic phosphorus-limitation gradient in Florida Bay and compared to a relatively nutrient enriched site in Biscayne Bay. A new method for measuring bacterial respiration in oligotrophic waters involving tracing respiration of 13C-glucose was developed. The results of the study indicate that 13C tracer assays may provide a better means of measuring bacterial respiration in low nutrient environments than traditional dissolved oxygen consumption-based methods due to strong correlations between incubation length and δ13C values. Results also suggest that overall bacterial growth efficiency may be lower at the most nutrient limited sites.
Resumo:
With the accumulation of anthropogenic carbon dioxide (CO2), a proceeding decline in seawater pH has been induced that is referred to as ocean acidification. The ocean's capacity for CO2 storage is strongly affected by biological processes, whose feedback potential is difficult to evaluate. The main source of CO2 in the ocean is the decomposition and subsequent respiration of organic molecules by heterotrophic bacteria. However, very little is known about potential effects of ocean acidification on bacterial degradation activity. This study reveals that the degradation of polysaccharides, a major component of marine organic matter, by bacterial extracellular enzymes was significantly accelerated during experimental simulation of ocean acidification. Results were obtained from pH perturbation experiments, where rates of extracellular alpha- and beta-glucosidase were measured and the loss of neutral and acidic sugars from phytoplankton-derived polysaccharides was determined. Our study suggests that a faster bacterial turnover of polysaccharides at lowered ocean pH has the potential to reduce carbon export and to enhance the respiratory CO2 production in the future ocean.
Resumo:
[EN] The incubation is an essential life period for oviparous species that very often experiences a high mortality. In some reptile species the number of eggs that develop together in the incubation chamber affects survival and hatchling phenotype. Sea turtle eggs develop in underground locations on sandy beaches in large masses that usually have more than 80 eggs. Natural egg mortality seems to vary among species and for the sensitive leatherbacks, external eggs seems to survive better than internal ones within the nest.
Resumo:
[EN] Sea turtle nests are exposed to different environmental risks that may affect their hatching success. Human exploitation, predation by wild or domestic animals, nest flooding or severe beach erosion or accession are common causes of egg mortality. However, there is very little information about the impact of microorganisms on turtle eggs. We analyzed loggerhead turtle eggs from Boavista Island (Republic of Cabo Verde) which were incubated under different environmental conditions in order to evaluate the presence and impact of fungus. We have isolated Fusarium oxysporum from dead and live eggs after three days of incubation.