936 resultados para Nanohole array


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the past five years, the cost of solar panels has dropped drastically and, in concert, the number of installed modules has risen exponentially. However, solar electricity is still more than twice as expensive as electricity from a natural gas plant. Fortunately, wire array solar cells have emerged as a promising technology for further lowering the cost of solar.

Si wire array solar cells are formed with a unique, low cost growth method and use 100 times less material than conventional Si cells. The wires can be embedded in a transparent, flexible polymer to create a free-standing array that can be rolled up for easy installation in a variety of form factors. Furthermore, by incorporating multijunctions into the wire morphology, higher efficiencies can be achieved while taking advantage of the unique defect relaxation pathways afforded by the 3D wire geometry.

The work in this thesis shepherded Si wires from undoped arrays to flexible, functional large area devices and laid the groundwork for multijunction wire array cells. Fabrication techniques were developed to turn intrinsic Si wires into full p-n junctions and the wires were passivated with a-Si:H and a-SiNx:H. Single wire devices yielded open circuit voltages of 600 mV and efficiencies of 9%. The arrays were then embedded in a polymer and contacted with a transparent, flexible, Ni nanoparticle and Ag nanowire top contact. The contact connected >99% of the wires in parallel and yielded flexible, substrate free solar cells featuring hundreds of thousands of wires.

Building on the success of the Si wire arrays, GaP was epitaxially grown on the material to create heterostructures for photoelectrochemistry. These cells were limited by low absorption in the GaP due to its indirect bandgap, and poor current collection due to a diffusion length of only 80 nm. However, GaAsP on SiGe offers a superior combination of materials, and wire architectures based on these semiconductors were investigated for multijunction arrays. These devices offer potential efficiencies of 34%, as demonstrated through an analytical model and optoelectronic simulations. SiGe and Ge wires were fabricated via chemical-vapor deposition and reactive ion etching. GaAs was then grown on these substrates at the National Renewable Energy Lab and yielded ns lifetime components, as required for achieving high efficiency devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-background applications such as climate monitoring, biology and security applications demand a large dynamic range. Under such conditions ultra-high sensitivity is not required. The resonator bolometer is a novel detector which is well-suited for these conditions. This device takes advantage of the high-density frequency multiplexing capabilities of superconducting microresonators while allowing for the use of high-Tc superconductors in fabrication, which enables a modest (1-4 K) operating temperature and larger dynamic range than is possible with conventional microresonators. The moderate operating temperature and intrinsic multiplexability of this device reduce cost and allow for large pixel counts, making the resonator bolometer especially suitable for the aforementioned applications. A single pixel consists of a superconducting microresonator whose light-absorbing area is placed on a thermally isolated island. Here we present experimental results and theoretical calculations for a prototype resonator bolometer array. Intrinsic device noise and noise equivalent power (NEP) under both dark and illuminated conditions are presented. Under dark conditions the device sensitivity is limited by the thermal noise fluctuations from the bolometer legs. Under the experimental illuminated conditions the device was photon noise limited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, dry chemical modification methods involving UV/ozone, oxygen plasma, and vacuum annealing treatments are explored to precisely control the wettability of CNT arrays. By varying the exposure time of these treatments the surface concentration of oxygenated groups adsorbed on the CNT arrays can be controlled. CNT arrays with very low amount of oxygenated groups exhibit a superhydrophobic behavior. In addition to their extremely high static contact angle, they cannot be dispersed in DI water and their impedance in aqueous electrolytes is extremely high. These arrays have an extreme water repellency capability such that a water droplet will bounce off of their surface upon impact and a thin film of air is formed on their surface as they are immersed in a deep pool of water. In contrast, CNT arrays with very high surface concentration of oxygenated functional groups exhibit an extreme hydrophilic behavior. In addition to their extremely low static contact angle, they can be dispersed easily in DI water and their impedance in aqueous electrolytes is tremendously low. Since the bulk structure of the CNT arrays are preserved during the UV/ozone, oxygen plasma, and vacuum annealing treatments, all CNT arrays can be repeatedly switched between superhydrophilic and superhydrophobic, as long as their O/C ratio is kept below 18%.

The effect of oxidation using UV/ozone and oxygen plasma treatments is highly reversible as long as the O/C ratio of the CNT arrays is kept below 18%. At O/C ratios higher than 18%, the effect of oxidation is no longer reversible. This irreversible oxidation is caused by irreversible changes to the CNT atomic structure during the oxidation process. During the oxidation process, CNT arrays undergo three different processes. For CNT arrays with O/C ratios lower than 40%, the oxidation process results in the functionalization of CNT outer walls by oxygenated groups. Although this functionalization process introduces defects, vacancies and micropores opening, the graphitic structure of the CNT is still largely intact. For CNT arrays with O/C ratios between 40% and 45%, the oxidation process results in the etching of CNT outer walls. This etching process introduces large scale defects and holes that can be obviously seen under TEM at high magnification. Most of these holes are found to be several layers deep and, in some cases, a large portion of the CNT side walls are cut open. For CNT arrays with O/C ratios higher than 45%, the oxidation process results in the exfoliation of the CNT walls and amorphization of the remaining CNT structure. This amorphization process can be implied from the disappearance of C-C sp2 peak in the XPS spectra associated with the pi-bond network.

The impact behavior of water droplet impinging on superhydrophobic CNT arrays in a low viscosity regime is investigated for the first time. Here, the experimental data are presented in the form of several important impact behavior characteristics including critical Weber number, volume ratio, restitution coefficient, and maximum spreading diameter. As observed experimentally, three different impact regimes are identified while another impact regime is proposed. These regimes are partitioned by three critical Weber numbers, two of which are experimentally observed. The volume ratio between the primary and the secondary droplets is found to decrease with the increase of Weber number in all impact regimes other than the first one. In the first impact regime, this is found to be independent of Weber number since the droplet remains intact during and subsequent to the impingement. Experimental data show that the coefficient of restitution decreases with the increase of Weber number in all impact regimes. The rate of decrease of the coefficient of restitution in the high Weber number regime is found to be higher than that in the low and moderate Weber number. Experimental data also show that the maximum spreading factor increases with the increase of Weber number in all impact regimes. The rate of increase of the maximum spreading factor in the high Weber number regime is found to be higher than that in the low and moderate Weber number. Phenomenological approximations and interpretations of the experimental data, as well as brief comparisons to the previously proposed scaling laws, are shown here.

Dry oxidation methods are used for the first time to characterize the influence of oxidation on the capacitive behavior of CNT array EDLCs. The capacitive behavior of CNT array EDLCs can be tailored by varying their oxygen content, represented by their O/C ratio. The specific capacitance of these CNT arrays increases with the increase of their oxygen content in both KOH and Et4NBF4/PC electrolytes. As a result, their gravimetric energy density increases with the increase of their oxygen content. However, their gravimetric power density decreases with the increase of their oxygen content. The optimally oxidized CNT arrays are able to withstand more than 35,000 charge/discharge cycles in Et4NBF4/PC at a current density of 5 A/g while only losing 10% of their original capacitance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel phase-type quantum-dot-array diffraction grating (QDADG) is reported. In contrast to an earlier amplitude-type QDADG [C. Wang , Rev. Sci. Instrum. 78, 053503 (2007)], the new phase-type QDADG would remove the zeroth order diffraction at some certain wavelength, as well as suppressing the higher-order diffractions. In this paper, the basic concept, the fabrication, the calibration techniques, and the calibration results are presented. Such a grating can be applied in the research fields of beam splitting, laser probe diagnostics, and so on.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crustal structure in Southern California is investigated using travel times from over 200 stations and thousands of local earthquakes. The data are divided into two sets of first arrivals representing a two-layer crust. The Pg arrivals have paths that refract at depths near 10 km and the Pn arrivals refract along the Moho discontinuity. These data are used to find lateral and azimuthal refractor velocity variations and to determine refractor topography.

In Chapter 2 the Pn raypaths are modeled using linear inverse theory. This enables statistical verification that static delays, lateral slowness variations and anisotropy are all significant parameters. However, because of the inherent size limitations of inverse theory, the full array data set could not be processed and the possible resolution was limited. The tomographic backprojection algorithm developed for Chapters 3 and 4 avoids these size problems. This algorithm allows us to process the data sequentially and to iteratively refine the solution. The variance and resolution for tomography are determined empirically using synthetic structures.

The Pg results spectacularly image the San Andreas Fault, the Garlock Fault and the San Jacinto Fault. The Mojave has slower velocities near 6.0 km/s while the Peninsular Ranges have higher velocities of over 6.5 km/s. The San Jacinto block has velocities only slightly above the Mojave velocities. It may have overthrust Mojave rocks. Surprisingly, the Transverse Ranges are not apparent at Pg depths. The batholiths in these mountains are possibly only surficial.

Pn velocities are fast in the Mojave, slow in Southern California Peninsular Ranges and slow north of the Garlock Fault. Pn anisotropy of 2% with a NWW fast direction exists in Southern California. A region of thin crust (22 km) centers around the Colorado River where the crust bas undergone basin and range type extension. Station delays see the Ventura and Los Angeles Basins but not the Salton Trough, where high velocity rocks underlie the sediments. The Transverse Ranges have a root in their eastern half but not in their western half. The Southern Coast Ranges also have a thickened crust but the Peninsular Ranges have no major root.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large quantities of teleseismic short-period seismograms recorded at SCARLET provide travel time, apparent velocity and waveform data for study of upper mantle compressional velocity structure. Relative array analysis of arrival times from distant (30° < Δ < 95°) earthquakes at all azimuths constrains lateral velocity variations beneath southern California. We compare dT/dΔ back azimuth and averaged arrival time estimates from the entire network for 154 events to the same parameters derived from small subsets of SCARLET. Patterns of mislocation vectors for over 100 overlapping subarrays delimit the spatial extent of an east-west striking, high-velocity anomaly beneath the Transverse Ranges. Thin lens analysis of the averaged arrival time differences, called 'net delay' data, requires the mean depth of the corresponding lens to be more than 100 km. Our results are consistent with the PKP-delay times of Hadley and Kanamori (1977), who first proposed the high-velocity feature, but we place the anomalous material at substantially greater depths than their 40-100 km estimate.

Detailed analysis of travel time, ray parameter and waveform data from 29 events occurring in the distance range 9° to 40° reveals the upper mantle structure beneath an oceanic ridge to depths of over 900 km. More than 1400 digital seismograms from earthquakes in Mexico and Central America yield 1753 travel times and 58 dT/dΔ measurements as well as high-quality, stable waveforms for investigation of the deep structure of the Gulf of California. The result of a travel time inversion with the tau method (Bessonova et al., 1976) is adjusted to fit the p(Δ) data, then further refined by incorporation of relative amplitude information through synthetic seismogram modeling. The application of a modified wave field continuation method (Clayton and McMechan, 1981) to the data with the final model confirms that GCA is consistent with the entire data set and also provides an estimate of the data resolution in velocity-depth space. We discover that the upper mantle under this spreading center has anomalously slow velocities to depths of 350 km, and place new constraints on the shape of the 660 km discontinuity.

Seismograms from 22 earthquakes along the northeast Pacific rim recorded in southern California form the data set for a comparative investigation of the upper mantle beneath the Cascade Ranges-Juan de Fuca region, an ocean-continent transit ion. These data consist of 853 seismograms (6° < Δ < 42°) which produce 1068 travel times and 40 ray parameter estimates. We use the spreading center model initially in synthetic seismogram modeling, and perturb GCA until the Cascade Ranges data are matched. Wave field continuation of both data sets with a common reference model confirms that real differences exist between the two suites of seismograms, implying lateral variation in the upper mantle. The ocean-continent transition model, CJF, features velocities from 200 and 350 km that are intermediate between GCA and T7 (Burdick and Helmberger, 1978), a model for the inland western United States. Models of continental shield regions (e.g., King and Calcagnile, 1976) have higher velocities in this depth range, but all four model types are similar below 400 km. This variation in rate of velocity increase with tectonic regime suggests an inverse relationship between velocity gradient and lithospheric age above 400 km depth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the mechanism of formation of periodic void arrays inside fused silica and BK7 glass irradiated by a tightly focused femtosecond (fs) laser beam. Our results show that the period of each void array is not uniform along the laser propagation direction, and the average period of the void array decreases with increasing pulse number and pulse energy. We propose a mechanism in which a standing electron plasma wave created by the interference of a fs-laser-driven electron wave and its reflected wave is responsible for the formation of the periodic void arrays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a simple single-layer magnetic microtrap configuration which can trap an array of magnetically-trapped Bose-Einstein condensate. The configuration consists of two series of parallel wires perpendicular to each other and all of the crossing points are cut off for maintaining the uniformity of the current. We analyse the trapping potential, the position of trapping centres and the uniformity of the array of the traps. The trapping depth and trapping frequency with different parameters are also calculated. Lastly, the effect of the cut-off crossing points, dissipate power, chip production are introduced concisely.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[ES]Este trabajo de fin de grado trata sobre el diseño de un array de antenas en tecnología microstrip para ser utilizado en la banda de 5 GHz del estándar de tecnologías inalámbricas IEEE 802.11a. Se buscará aplicar la teoría de arrays para conseguir la mayor ganancia posible, pero al mismo tiempo tratando de obtener un gran ancho de banda para que la antena sea óptima dentro de la mayor parte posible de la banda especificada. El proyecto partirá de un único parche microstrip para posteriormente ir evolucionando el diseño hasta llegar a un array de 2x2 elementos. Al primer diseño se le irán añadiendo progresivamente todos los componentes necesarios (red de adaptación, desfasadores, mayor número de parches, etc.) para poder ir estudiando las simulaciones a la vez que el diseño progresa. Todos los diseños se realizarán con el software ADS (Advanced Design System) de la compañía Agilent Technologies. Finalmente se fabricará el array diseñado y se medirá para contrastarlo con las simulaciones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate a planar ion chip design with a two-dimensional array of linear ion traps for the scalable quantum information processor. The segmented electrodes reside in a single plane on a substrate and a grounded metal plate, a combination of appropriate rf and DC potentials are applied to them for stable ion confinement, and the trap axes are located above the surface at a distance controlled by the electrodes' lateral extent and the substrate's height as discussed. The potential distributions are calculated using static electric field qualitatively. This architecture is conceptually simple and many current microfabrication techniques are feasible for the basic structure. It may provide a promising route for scalable quantum computers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Precision polarimetry of the cosmic microwave background (CMB) has become a mainstay of observational cosmology. The ΛCDM model predicts a polarization of the CMB at the level of a few μK, with a characteristic E-mode pattern. On small angular scales, a B-mode pattern arises from the gravitational lensing of E-mode power by the large scale structure of the universe. Inflationary gravitational waves (IGW) may be a source of B-mode power on large angular scales, and their relative contribution to primordial fluctuations is parameterized by a tensor-to-scalar ratio r. BICEP2 and Keck Array are a pair of CMB polarimeters at the South Pole designed and built for optimal sensitivity to the primordial B-mode peak around multipole l ~ 100. The BICEP2/Keck Array program intends to achieve a sensitivity to r ≥ 0.02. Auxiliary science goals include the study of gravitational lensing of E-mode into B-mode signal at medium angular scales and a high precision survey of Galactic polarization. These goals require low noise and tight control of systematics. We describe the design and calibration of the instrument. We also describe the analysis of the first three years of science data. BICEP2 observes a significant B-mode signal at 150 GHz in excess of the level predicted by the lensed-ΛCDM model, and Keck Array confirms the excess signal at > 5σ. We combine the maps from the two experiments to produce 150 GHz Q and U maps which have a depth of 57 nK deg (3.4 μK arcmin) over an effective area of 400 deg2 for an equivalent survey weight of 248000 μK2. We also show preliminary Keck Array 95 GHz maps. A joint analysis with the Planck collaboration reveals that much of BICEP2/Keck Array's observed 150 GHz signal at low l is more likely a Galactic dust foreground than a measurement of r. Marginalizing over dust and r, lensing B-modes are detected at 7.0σ significance.