963 resultados para Na,K-ATPase


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Climate change with increasing temperature and ocean acidification (OA) poses risks for marine ecosystems. According to Pörtner and Farrell [1], synergistic effects of elevated temperature and CO2-induced OA on energy metabolism will narrow the thermal tolerance window of marine ectothermal animals. To test this hypothesis, we investigated the effect of an acute temperature rise on energy metabolism of the oyster, Crassostrea gigas chronically exposed to elevated CO2 levels (partial pressure of CO2 in the seawater ~0.15 kPa, seawater pH ~ 7.7). Within one month of incubation at elevated PCO2 and 15 °C hemolymph pH fell (pHe = 7.1 ± 0.2 (CO2-group) vs. 7.6 ± 0.1 (control)) and PeCO2 values in hemolymph increased (0.5 ± 0.2 kPa (CO2-group) vs. 0.2 ± 0.04 kPa (control)). Slightly but significantly elevated bicarbonate concentrations in the hemolymph of CO2-incubated oysters ([HCO-3]e = 1.8 ± 0.3 mM (CO2-group) vs. 1.3 ± 0.1 mM (control)) indicate only minimal regulation of extracellular acid-base status. At the acclimation temperature of 15 °C the OA-induced decrease in pHe did not lead to metabolic depression in oysters as standard metabolism rates (SMR) of CO2-exposed oysters were similar to controls. Upon acute warming SMR rose in both groups, but displayed a stronger increase in the CO2-incubated group. Investigation in isolated gill cells revealed a similar temperature-dependence of respiration between groups. Furthermore, the fraction of cellular energy demand for ion regulation via Na+/K+-ATPase was not affected by chronic hypercapnia or temperature. Metabolic profiling using 1H-NMR spectroscopy revealed substantial changes in some tissues following OA exposure at 15 °C. In mantle tissue alanine and ATP levels decreased significantly whereas an increase in succinate levels was observed in gill tissue. These findings suggest shifts in metabolic pathways following OA-exposure. Our study confirms that OA affects energy metabolism in oysters and suggests that climate change may affect populations of sessile coastal invertebrates such as mollusks

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The stomachs of most vertebrates operate at an acidic pH of 2 generated by the gastric H+/K+-ATPase located in parietal cells. The acidic pH in stomachs of vertebrates is believed to aid digestion and to protect against environmental pathogens. Little attention has been placed on whether acidic gastric pH regulation is a vertebrate character or a deuterostome ancestral trait. Here, we report alkaline conditions up to pH 10.5 in the larval digestive systems of ambulacraria (echinoderm + hemichordate), the closest relative of the chordate. Microelectrode measurements in combination with specific inhibitors for acid-base transporters and ion pumps demonstrated that the gastric alkalization machinery in sea urchin larvae is mainly based on direct H+ secretion from the stomach lumen and involves a conserved set of ion pumps and transporters. Hemichordate larvae additionally utilized HCO3- transport pathways to generate even more alkaline digestive conditions. Molecular analyses in combination with acidification experiments supported these findings and identified genes coding for ion pumps energizing gastric alkalization. Given that insect larval guts were also reported to be alkaline, our discovery raises the hypothesis that the bilaterian ancestor utilized alkaline digestive system while the vertebrate lineage has evolved a strategy to strongly acidify their stomachs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The tissue distribution and ontogeny of Na+/K+-ATPase has been examined as an indicator for ion-regulatory epithelia in whole animal sections of embryos and hatchlings of two cephalopod species: the squid Loligo vulgaris and the cuttlefish Sepia officinalis. This is the first report of the immunohistochemical localization of cephalopod Na+/K+-ATPase with the polyclonal antibody alpha (H-300) raised against the human alpha1-subunit of Na+/K+-ATPase. Na+/K+-ATPase immunoreactivity was observed in several tissues (gills, pancreatic appendages, nerves), exclusively located in baso-lateral membranes lining blood sinuses. Furthermore, large single cells in the gill of adult L. vulgaris specimens closely resembled Na+/K+-ATPase-rich cells described in fish. Immunohistochemical observations indicated that the amount and distribution of Na+/K+-ATPase in late cuttlefish embryos was similar to that found in juvenile and adult stages. The ion-regulatory epithelia (e.g., gills, excretory organs) of the squid embryos and paralarvae exhibited less differentiation than adults. Na+/K+-ATPase activities for whole animals were higher in hatchlings of S. officinalis (157.0 ± 32.4 µmol/g FM/h) than in those of L. vulgaris (31.8 ± 3.3 µmol/g FM/h). S. officinalis gills and pancreatic appendages achieved activities of 94.8 ± 18.5 and 421.8 ± 102.3 µmol ATP/g FM/h, respectively. High concentrations of Na+/K+-ATPase in late cephalopod embryos might be important in coping with the challenging abiotic conditions (low pH, high pCO2) that these organisms encounter inside their eggs. Our results also suggest a higher sensitivity of squid vs. cuttlefish embryos to environmental acid-base disturbances.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Effects of severe hypercapnia have been extensively studied in marine fishes, while knowledge on the impacts of moderately elevated CO2 levels and their combination with warming is scarce. Here we investigate ion regulation mechanisms and energy budget in gills from Atlantic cod acclimated long-term to elevated PCO2 levels (2500 µatm) and temperature (18 °C). Isolated perfused gill preparations established to determine gill thermal plasticity during acute exposures (10-22 °C) and in vivo costs of Na+/K+-ATPase activity, protein and RNA synthesis. Maximum enzyme capacities of F1Fo-ATPase, H+-ATPase and Na+/K+-ATPase were measured in vitro in crude gill homogenates. After whole animal acclimation to elevated PCO2 and/or warming, branchial oxygen consumption responded more strongly to acute temperature change. The fractions of gill respiration allocated to protein and RNA synthesis remained unchanged. In gills of fish CO2-exposed at both temperatures, energy turnover associated with Na+/K+-ATPase activity was reduced by 30% below rates of control fish. This contrasted in vitro capacities of Na+/K+-ATPase, which remained unchanged under elevated CO2 at 10 °C, and earlier studies which had found a strong upregulation under severe hypercapnia. F1Fo-ATPase capacities increased in hypercapnic gills at both temperatures, whereas Na+/K+ATPase and H+-ATPase capacities only increased in response to elevated CO2 and warming indicating the absence of thermal compensation under CO2. We conclude that in vivo ion regulatory energy demand is lowered under moderately elevated CO2 levels despite the stronger thermal response of total gill respiration and the upregulation of F1Fo-ATPase. This effect is maintained at elevated temperature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Organization of proteins into structurally and functionally distinct plasma membrane domains is an essential characteristic of polarized epithelial cells. Based on studies with cultured kidney cells, we have hypothesized that a mechanism for restricting Na/K-ATPase to the basal-lateral membrane involves E-cadherin–mediated cell–cell adhesion and integration of Na/K-ATPase into the Triton X-100–insoluble ankyrin- and spectrin-based membrane cytoskeleton. In this study, we examined the relevance of these in vitro observations to the generation of epithelial cell polarity in vivo during mouse kidney development. Using differential detergent extraction, immunoblotting, and immunofluorescence histochemistry, we demonstrate the following. First, expression of the 220-kDa splice variant of ankyrin-3 correlates with the development of resistance to Triton X-100 extraction for Na/K-ATPase, E-cadherin, and catenins and precedes maximal accumulation of Na/K-ATPase. Second, expression of the 190-kDa slice variant of ankyrin-3 correlates with maximal accumulation of Na/K-ATPase. Third, Na/K-ATPase, ankyrin-3, and fodrin specifically colocalize at the basal-lateral plasma membrane of all epithelial cells in which they are expressed and during all stages of nephrogenesis. Fourth, the relative immunofluorescence staining intensities of Na/K-ATPase, ankyrin-3, and fodrin become more similar during development until they are essentially identical in adult kidney. Thus, renal epithelial cells in vivo regulate the accumulation of E-cadherin–mediated adherens junctions, the membrane cytoskeleton, and Na/K-ATPase through sequential protein expression and assembly on the basal-lateral membrane. These results are consistent with a mechanism in which generation and maintenance of polarized distributions of these proteins in vivo and in vitro involve cell–cell adhesion, assembly of the membrane cytoskeleton complex, and concomitant integration and retention of Na/K-ATPase in this complex.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Spectrin isoforms are often segregated within specialized plasma membrane subdomains where they are thought to contribute to the development of cell surface polarity. It was previously shown that ankyrin and β spectrin are recruited to sites of cell–cell contact in Drosophila S2 cells expressing the homophilic adhesion molecule neuroglian. Here, we show that neuroglian has no apparent effect on a second spectrin isoform (αβH), which is constitutively associated with the plasma membrane in S2 cells. Another membrane marker, the Na,K-ATPase, codistributes with ankyrin and αβ spectrin at sites of neuroglian-mediated contact. The distributions of these markers in epithelial cells in vivo are consistent with the order of events observed in S2 cells. Neuroglian, ankyrin, αβ spectrin, and the Na,K-ATPase colocalize at the lateral domain of salivary gland cells. In contrast, αβH spectrin is sorted to the apical domain of salivary gland and somatic follicle cells. Thus, the two spectrin isoforms respond independently to positional cues at the cell surface: in one case an apically sorted receptor and in the other case a locally activated cell–cell adhesion molecule. The results support a model in which the membrane skeleton behaves as a transducer of positional information within cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Single interneurons influence thousands of postsynaptic principal cells, and the control of interneuronal excitability is an important regulator of the computational properties of the hippocampus. However, the mechanisms underlying long-term alterations in the input–output functions of interneurons are not fully understood. We report a mechanism of interneuronal plasticity that leads to the functional enhancement of the gain of glutamatergic inputs in the absence of long-term potentiation of the excitatory synaptic currents. Interneurons in the dentate gyrus exhibit a characteristic, limited (≈8 mV) depolarization of their resting membrane potential after high-frequency stimulation of the perforant path. The depolarization can be observed with either whole-cell or perforated patch electrodes, and it lasts in excess of 3 h. The long-term depolarization is specific to interneurons, because granule cells do not show it. The depolarization requires the activation of Ca2+-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and the rise of intracellular Ca2+, but not N-methyl-d-aspartate (NMDA) receptor activation. Data on the maintenance of the depolarization point to a major role for a long-term change in the rate of electrogenic Na+/K+-ATPase pump function in interneurons. As a result of the depolarization, interneurons after the tetanus respond with action potential discharges to previously subthreshold excitatory postsynaptic potentials (EPSPs), even though the EPSPs are not potentiated. These results demonstrate that the plastic nature of the interneuronal resting membrane potential underlies a unique form of long-term regulation of the gain of excitatory inputs to γ-aminobutyric acid (GABA)ergic neurons.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many peptide hormone and neurotransmitter receptors belonging to the seven membrane-spanning G protein-coupled receptor family have been shown to transmit ligand-dependent mitogenic signals in vitro. However, the physiological roles of the mitogenic activity through G protein-coupled receptors in vivo remain to be elucidated. Here we have generated G protein-coupled cholecystokinin (CCK)-B/gastrin receptor deficient-mice by gene targeting. The homozygous mice showed a remarkable atrophy of the gastric mucosa macroscopically, even in the presence of severe hypergastrinemia. The atrophy was due to a decrease in parietal cells and chromogranin A-positive enterochromaffin-like cells expressing the H+,K(+)-ATPase and histidine decarboxylase genes, respectively. Oral administration of a proton pump inhibitor, omeprazole, which induced hypertrophy of the gastric mucosa with hypergastrinemia in wild-type littermates, did not eliminate the gastric atrophy of the homozygotes. These results clearly demonstrated that the G protein-coupled CCK-B/gastrin receptor is essential for the physiological as well as pathological proliferation of gastric mucosal cells in vivo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The kidneys of patients with autosomal dominant polycystic kidney disease become massively enlarged due to the progressive expansion of myriad fluid-filled cysts. The epithelial cells that line the cyst walls are responsible for secreting the cyst fluid, but the mechanism through which this secretion occurs is not well established. Recent studies suggest that renal cyst epithelial cells actively secrete Cl across their apical membranes, which in turn drives the transepithelial movement of Na and water. The characteristics of this secretory flux suggest that it is dependent upon the participation of an apical cystic fibrosis transmembrane conductance regulator (CFTR)-like Cl channel and basolateral Na,K-ATPase. To test this hypothesis, we have immunolocalized the CFTR and Na,K-ATPase proteins in intact cysts and in cyst epithelial cells cultured in vitro on permeable filter supports. In both settings, cyst epithelial cells were found to possess Na,K-ATPase exclusively at their basolateral surfaces; apical labeling was not detected. The CFTR protein was present at the apical surfaces of cyst epithelial cells that had been stimulated to secrete through incubation in forskolin. CFTR was detected in intracellular structures in cultured cyst epithelial cells that had not received the forskolin treatment. These results demonstrate that the renal epithelial cells that line cysts in autosomal dominant polycystic kidney disease express transport systems with the appropriate polarity to mediate active Cl and fluid secretion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Effects of increasing extracellular K+ or intracellular Na+ concentrations on glucose metabolism in cultures of rat astroglia and neurons were examined. Cells were incubated in bicarbonate buffer, pH 7.2, containing 2 mM glucose, tracer amounts of [14C]deoxyglucose ([14C]dGlc), and 5.4, 28, or 56 mM KCl for 10, 15, or 30 min, and then for 5 min in [14C]dGlc-free buffer to allow efflux of unmetabolized [14C]dGlc. Cells were then digested and assayed for labeled products, which were shown to consist of 96-98% [14C]deoxyglucose 6-phosphate. Increased K+ concentrations significantly raised [14C]deoxyglucose 6-phosphate accumulation in both neuronal and mixed neuronal-astroglial cultures at 15 and 30 min but did not raise it in astroglial cultures. Veratridine (75 microM), which opens voltage-dependent Na+ channels, significantly raised rates of [14C]dGlc phosphorylation in astroglial cultures (+20%), and these elevations were blocked by either 1 mM ouabain, a specific inhibitor of Na+,K(+)-ATPase (EC 3.6.1.37), or 10 microM tetrodotoxin, which blocks Na+ channels. The carboxylic sodium ionophore, monensin (10 microM), more than doubled [14C]dGlc phosphorylation; this effect was only partially blocked by ouabain and unaffected by tetrodotoxin. L-Glutamate (500 microM) also stimulated [14C]dGlc phosphorylation in astroglia--not through N-methyl-D-aspartate or non-N-methyl-D-aspartate receptor mechanisms but via a Na(+)-dependent glutamate-uptake system. These results indicate that increased uptake of Na+ can stimulate energy metabolism in astroglial cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O Trypanosoma cruzi expressa um grupo de glicoprotcinas de superfície, denominadas Tc-85, que pertencem à superfumília gêmca das gp85/traus-sialidases. Nosso laboratório clonou e caracterizou um membro da fumília Tc85 (Tc85-11), cuja região carboxila tenninal (clone Tc85-1) adere em laminina e em células de mamífero. Usando peptídeos sintéticos, correspondendo em seqüência à Tc85-1, caracterizou-se o motivo mais conservado da superfamilia gênica das gp85/trans-sialidases (VTVxNVFLYNR), o qual não adere em laminina. Esse motivo foi chamado peptídeo J. Por cromatografia de extratos de membrana de cardiomiócitos em coluna de afmidade contendo peptídeo J, foi isolada uma molécula de 30kDa identificada como sendo a subunidade β3 da Na+, K+ ATPase. A porção extracelular da subunidade β3 da Na+, K+ ATPase foi clonada e a interação in vitro desta proteína com peptídeo J foi observada. Deste modo, é sugerido aqui que a subunidade β3 da Na+, K+ ATPase pode ter um papel importante na interação do parasita com a célula hospedeira.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study examined the effect of transfer to increased environmental salinity on the circulating levels of angiotensin II (ANG II), C-type natriuretic peptide (CNP), and arginine vasotocin (AVT) in the euryhaline elasmobranch, Carcharhinus letteas. Plasma levels of ANG 11 and CNP were significantly increased in C. leucas chronically acclimated to seawater (SW) in comparison to freshwater (FW) acclimated fish. There was no difference in plasma AVT levels. Acute transfer of FW fish to 75% SW induced an increase in plasma ANG II levels within 12 h, and subsequent transfer from 75 to 100% SW further increased plasma ANG 11 levels at both 24 and 72 h. No change in plasma CNP was observed during acute transfer to increased salinity. However, a significant increase in plasma AVT levels was observed following 96 h in 75% SW and 24 h in 100% SW. In chronically SW acclimated C leucas plasma osmolality, sodium, chloride, and Urea were all significantly higher than FW acclimated fish but there was no difference in haematocrit. Acute transfer of C letteas to 75% SW induced a significant increase in plasma osmolality, sodium and urea concentrations within 96 h of transfer. Subsequent transfer from 75 to 100% SW induced a further increase in these variables within 24 h in addition to a significant increase in plasma chloride above control levels. Haematocrit did not differ between the experimental and control groups throughout the acute study. Circulating levels of ANG 11 were significantly correlated to plasma, sodium, chloride, and urea concentrations during acclimation to SW. Conversely, circulating levels of CNP and AVT did not correlate to plasma osmolytes, however, CNP was significantly correlated to haematocrit during acclimation to seawater. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electrolyte Transport in the Mammalian Colon: Mechanisms and Implications for Disease. Physiol. Rev. 82: 245-289, 2002.The colonic epithelium has both absorptive and secretory functions. The transport is characterized by a net absorption of NaCl, short-chain fatty acids (SCFA), and water, allowing extrusion of a feces with very little water and salt content. In addition, the epithelium does secret mucus, bicarbonate, and KCl. Polarized distribution of transport proteins in both luminal and basolateral membranes enables efficient salt transport in both directions, probably even within an individual cell. Meanwhile, most of the participating transport proteins have been identified, and their function has been studied in detail. Absorption of NaCl is a rather steady process that is controlled by steroid hormones regulating the expression of epithelial Na+ channels (ENaC), the Na+-K+-ATPase, and additional modulating factors such as the serum- and glucocorticoid-regulated kinase SGK. Acute regulation of absorption may occur by a Na+ feedback mechanism and the cystic fibrosis transmembrane conductance regulator (CFTR). Cl- secretion in the adult colon relies on luminal CFTR, which is a cAMP-regulated Cl- channel and a regulator of other transport proteins. As a consequence, mutations in CFTR result in both impaired Cl- secretion and enhanced Na+ absorption in the colon of cystic fibrosis (CF) patients. Ca2+- and cAMP-activated basolateral K+ channels support both secretion and absorption of electrolytes and work in concert with additional regulatory proteins, which determine their functional and pharmacological profile. Knowledge of the mechanisms of electrolyte transport in the colon enables the development of new strategies for the treatment of CF and secretory diarrhea. It will also lead to a better understanding of the pathophysiological events during inflammatory bowel disease and development of colonic carcinoma.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The antitumour bifunctional alkylating agent nitrogen mustard (HN2) inhibited the unidirectional influx of the potassium congener, 86 rubidium, into murine PC6A plasmacytoma cells and L1210 leukaemia cells. The proliferation of L1210 cells in vitro was characterised and shown to be sentitive to HN2. 86Rubidium influx into cells from rapidly-dividing cultures was more sensitive to inhibition by HN2 than that of cells from stationary cultures. Three components of unidirectional 86Rb+ & K+ influx into proliferating L1210 cells were identified pharmacologically: approximately 40% was active to the Na+ K+ ATPase inhibitor ouabain (10-3M), 40% was sensitive to the `loop' diuretics bumetanide (10-4M) and furosemide (10-3M) and the remainder was insensitive to both ouabain and furosemide. HN2 (10-5M) selectively inhibited the diuretic-sensitive component, which was entirely dependent upon extracellular Na+ and Cl- ions, and was presumed to represent Na+ K+ Cl- cotransport activity. The system did not mediate K+ /K+ exchange or unidirectional 86Rb+ efflux; accordingly, 86Rb+ efflux was insensitive to HN2. Inhibition of 86Rb & K+ influx by 10-5M HN2 was accompanied by approximately 35% of cell volume under isosmotic conditions; thus intracellular Na+ and K+ concentrations remained unchanged. These effects followed lethal damage to the cells but preceded actual cell death; other cellular functions were maintained including accumulation of cycloleucine, transmembrane potential, permeability to trypan blue, intracellular pH, total intracellular glutathione and calcium concentrations. No evidence was found that elevated cAMP levels or reduced ATP levels were involved in modulation of 86Rb+ & K+ influx. However, the Na+ - depedent transport of an amino acid was inhibited in a manner which appeared to be independent of 86Rb & K+ influx. An HN2-resistant L1210R cell line was also resistant to furosemide, and lacked a component of 86Rb+ & K+ influx which was sensitive to furosemide (10-3M). The results strongly suggest that the Na+ K+ Cl- costransporter of L1210 cells is a cellular target for HN2. This lesion is discussed with reference to the cytotoxic effects of the agent.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Disturbances in electrolyte homeostasis are a frequent adverse side-effect of the administration of aminoglycoside antibiotics such as gentamicin, and the antineoplastic agent cis-platinum. The aims of this work were to further elucidate the site(s) and mechanism(s) by which these drugs may produce disturbances in the renal reabsorption of calcium and magnesium. These investigations were undertaken using a range of in vivo and in vitro techniques and models. Initially, a series of in vivo studies was conducted to delineate aspects of the acute and chronic effects of both drugs on renal electrolyte handling and to select and evaluate an appropriate animal model: subsequent investigations were focused on gentamicin. In a study of the acute and chronic effects of cis-platinum administration, there were pronounced acute changes in a variety of indices of nephrotoxic injury, including electrolyte excretion. Most effects resolved but there were chronic increases in the urinary excretion of calcium and magnesium. The renal response of three strains of rat (Fischer 344, Sprague-Dawley (SD), and Wistar) to a ranges of doses of gentamicin was also investigated. Drug administration produced substantially different responses between strains, in particular marked differences in calcium and magnesium excretion. The results suggested that the SD rat was an appropriately sensitive strain for use in further investigations. Acute infusion of gentamicin in the anaesthetised SD rat produced rapid, substantial increases in the fractional excretion of calcium and magnesium, while sodium and potassium output were unaffected, confirming previous results of similar experiments using F344 rats. Studies using lithium clearance measurements in the anaesthetised SD rat were undertaken to investigate the effects of gentamicin on proximal tubular calcium reabsorption. Lithium clearance was unaffected by acute gentamicin infusion, suggesting that the site of acute gentamicin-induced hypercalciuria may not be located in the proximal tubule. Inhibition of Ca2+ ATPase activity was investigated as a potential mechanism by which calcium reabsorption could be affected after aminoglycoside administration. In vitro, both Ca2+ ATPase and Na+/K+ ATPase activity could be similarly inhibited by the presence of aminoglycosides, in a dose-related manner. Whilst inhibition of Na+/K+ ATPase could be demonstrated biochemically after in vivo administration of gentamicin, there were no concurrent effects on Ca2+ ATPase activity, suggesting that inhibition of Ca2+ ATPase activity is unlikely to be a primary mechanism of aminoglycoside-induced reductions of calcium reabsorption. Histochemical studies could not discern inhibition of either Na+/K+ ATPase or Ca2+ ATPase activity after in vivo administration of gentamicin. Selection of renal cell lines for further investigative in vitro studies on the mechanisms of altered cation reabsorption was considered using MTT (3-(4,5,-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and Neutral Red cytotoxicity assays. The ability of LLC-PK1 and LLC-RK1 cell lines to correctly rank a series of nephrotoxic compounds with their known nephrotoxic potency in vivo was studied. Using these cell lines grown on semi-permeable inserts, alterations in the paracellular transport of 45Ca was investigated as a possible mechanism by which gentamicin could alter calcium reabsorption in vivo. Short term exposure (I h) of LLC-RK1 cells to gentamicin, via both cell surfaces, resulted in a reduction in paracellular permeability to both transepithelial 3H-mannitol and 45Ca fluxes. When LLC-RK1 cells were exposed via the apical surface only, similar dose-related reductions were seen to those observed when cells were exposed to the drug from both sides. Short-term basal exposure to gentamicin appeared to contribute less to the observed reductions in 3H-mannitol and 45Ca fluxes. Experiments investigating transepithelial movement of 45Ca and 3H-mannitol on LLC-PK1 cells after acute gentamicin exposure were inconclusive. Longer exposure (48 h) to gentamicin caused an increase in the permeability of the monolayer and a consequent increase in transepithelial 45Ca flux in the LLC-RK1 cell line; increases in permeability of LLC-PK1 cells to 45Ca and 3H-mannitol were not apparent under the same conditions. The site and mechanism at which gentamicin, in particular, alters calcium reabsorption cannot be definitively described from these studies. However, indirect evidence from lithium clearance studies suggests that the site of the lesion is unlikely to be located in the proximal tubule. The mechanism by which gentamicin exposure alters calcium reabsorption may be by reducing paracellular permeability to calcium rather than by altering active calcium transport processes.