996 resultados para NONLINEAR LATTICES
Resumo:
This paper deals with the theoretical studies of nonlinear interactions of azimuthal surface waves (ASW) in cylindrical metal waveguides fully filled by a uniform magnetoactive plasma. These surface-type wave perturbations propagate in azimuthal direction across an external magnetic field, which is directed along the waveguide axis. The ASW is a relatively new kind of surface waves and so far the nonlinear effects associated with their propagation are outside the scope of scientific issues. They are characterized by a discrete set of mode numbers values which define the ASW eigenfrequencies. This fact leads to several peculiarities of ASW compared with ordinary surface-type waves.
Resumo:
The paper investigates the design of secret sharing that is immune against cheating (as defined by the Tompa-Woll attack). We examine secret sharing with binary shares and secrets. Bounds on the probability of successful cheating are given for two cases. The first case relates to secret sharing based on bent functions and results in a non-perfect scheme. The second case considers perfect secret sharing built on highly nonlinear balanced Boolean functions.
Resumo:
In this paper a novel controller for stable and precise operation of multi-rotors with heavy slung loads is introduced. First, simplified equations of motions for the multi-rotor and slung load are derived. The model is then used to design a Nonlinear Model Predictive Controller (NMPC) that can manage the highly nonlinear dynamics whilst accounting for system constraints. The controller is shown to simultaneously track specified waypoints whilst actively damping large slung load oscillations. A Linear-quadratic regulator (LQR) controller is also derived, and control performance is compared in simulation. Results show the improved performance of the Nonlinear Model Predictive Control (NMPC) controller over a larger flight envelope, including aggressive maneuvers and large slung load displacements. Computational cost remains relatively small, amenable to practical implementation. Such systems for small Unmanned Aerial Vehicles (UAVs) may provide significant benefit to several applications in agriculture, law enforcement and construction.
Resumo:
A novel gray-box neural network model (GBNNM), including multi-layer perception (MLP) neural network (NN) and integrators, is proposed for a model identification and fault estimation (MIFE) scheme. With the GBNNM, both the nonlinearity and dynamics of a class of nonlinear dynamic systems can be approximated. Unlike previous NN-based model identification methods, the GBNNM directly inherits system dynamics and separately models system nonlinearities. This model corresponds well with the object system and is easy to build. The GBNNM is embedded online as a normal model reference to obtain the quantitative residual between the object system output and the GBNNM output. This residual can accurately indicate the fault offset value, so it is suitable for differing fault severities. To further estimate the fault parameters (FPs), an improved extended state observer (ESO) using the same NNs (IESONN) from the GBNNM is proposed to avoid requiring the knowledge of ESO nonlinearity. Then, the proposed MIFE scheme is applied for reaction wheels (RW) in a satellite attitude control system (SACS). The scheme using the GBNNM is compared with other NNs in the same fault scenario, and several partial loss of effect (LOE) faults with different severities are considered to validate the effectiveness of the FP estimation and its superiority.
Resumo:
A discrete agent-based model on a periodic lattice of arbitrary dimension is considered. Agents move to nearest-neighbor sites by a motility mechanism accounting for general interactions, which may include volume exclusion. The partial differential equation describing the average occupancy of the agent population is derived systematically. A diffusion equation arises for all types of interactions and is nonlinear except for the simplest interactions. In addition, multiple species of interacting subpopulations give rise to an advection-diffusion equation for each subpopulation. This work extends and generalizes previous specific results, providing a construction method for determining the transport coefficients in terms of a single conditional transition probability, which depends on the occupancy of sites in an influence region. These coefficients characterize the diffusion of agents in a crowded environment in biological and physical processes.
Resumo:
This paper proposes a nonlinear excitation controller to improve transient stability, oscillation damping and voltage regulation of the power system. The energy function of the predicted system states is used to obtain the desired flux for the next time step, which in turn is used to obtain a supplementary control input using an inverse filtering method. The inverse filtering technique enables the system to provide an additional input for the excitation system, which forces the system to track the desired flux. Synchronous generator flux saturation model is used in this paper. A single machine infinite bus (SMIB) test system is used to demonstrate the efficacy of the proposed control method using time-domain simulations. The robustness of the controller is assessed under different operating conditions.
Resumo:
In this paper, we derive a new nonlinear two-sided space-fractional diffusion equation with variable coefficients from the fractional Fick’s law. A semi-implicit difference method (SIDM) for this equation is proposed. The stability and convergence of the SIDM are discussed. For the implementation, we develop a fast accurate iterative method for the SIDM by decomposing the dense coefficient matrix into a combination of Toeplitz-like matrices. This fast iterative method significantly reduces the storage requirement of O(n2)O(n2) and computational cost of O(n3)O(n3) down to n and O(nlogn)O(nlogn), where n is the number of grid points. The method retains the same accuracy as the underlying SIDM solved with Gaussian elimination. Finally, some numerical results are shown to verify the accuracy and efficiency of the new method.
Resumo:
In this paper, a new alternating direction implicit Galerkin--Legendre spectral method for the two-dimensional Riesz space fractional nonlinear reaction-diffusion equation is developed. The temporal component is discretized by the Crank--Nicolson method. The detailed implementation of the method is presented. The stability and convergence analysis is strictly proven, which shows that the derived method is stable and convergent of order $2$ in time. An optimal error estimate in space is also obtained by introducing a new orthogonal projector. The present method is extended to solve the fractional FitzHugh--Nagumo model. Numerical results are provided to verify the theoretical analysis.
Resumo:
A two-dimensional variable-order fractional nonlinear reaction-diffusion model is considered. A second-order spatial accurate semi-implicit alternating direction method for a two-dimensional variable-order fractional nonlinear reaction-diffusion model is proposed. Stability and convergence of the semi-implicit alternating direct method are established. Finally, some numerical examples are given to support our theoretical analysis. These numerical techniques can be used to simulate a two-dimensional variable order fractional FitzHugh-Nagumo model in a rectangular domain. This type of model can be used to describe how electrical currents flow through the heart, controlling its contractions, and are used to ascertain the effects of certain drugs designed to treat arrhythmia.
Resumo:
Efficient and accurate geometric and material nonlinear analysis of the structures under ultimate loads is a backbone to the success of integrated analysis and design, performance-based design approach and progressive collapse analysis. This paper presents the advanced computational technique of a higher-order element formulation with the refined plastic hinge approach which can evaluate the concrete and steel-concrete structure prone to the nonlinear material effects (i.e. gradual yielding, full plasticity, strain-hardening effect when subjected to the interaction between axial and bending actions, and load redistribution) as well as the nonlinear geometric effects (i.e. second-order P-d effect and P-D effect, its associate strength and stiffness degradation). Further, this paper also presents the cross-section analysis useful to formulate the refined plastic hinge approach.
Resumo:
Background: Providing motivationally supportive physical education experiences for learners is crucial since empirical evidence in sport and physical education research has associated intrinsic motivation with positive educational outcomes. Self-determination theory (SDT) provides a valuable framework for examining motivationally supportive physical education experiences through satisfaction of three basic psychological needs: autonomy, competence and relatedness. However, the capacity of the prescriptive teaching philosophy of the dominant traditional physical education teaching approach to effectively satisfy the psychological needs of students to engage in physical education has been questioned. The constraints-led approach (CLA) has been proposed as a viable alternative teaching approach that can effectively support students’ self-motivated engagement in physical education. Purpose: We sought to investigate whether adopting the learning design and delivery of the CLA, guided by key pedagogical principles of nonlinear pedagogy (NLP), would address basic psychological needs of learners, resulting in higher self-reported levels of intrinsic motivation. The claim was investigated using action research. The teacher/researcher delivered two lessons aimed at developing hurdling skills: one taught using the CLA and the other using the traditional approach. Participants and Setting: The main participant for this study was the primary researcher and lead author who is a PETE educator, with extensive physical education teaching experience. A sample of 54 pre-service PETE students undertaking a compulsory second year practical unit at an Australian university was recruited for the study, consisting of an equal number of volunteers from each of two practical classes. A repeated measures experimental design was adopted, with both practical class groups experiencing both teaching approaches in a counterbalanced order. Data collection and analysis: Immediately after participation in each lesson, participants completed a questionnaire consisting of 22 items chosen from validated motivation measures of basic psychological needs and indices of intrinsic motivation, enjoyment and effort. All questionnaire responses were indicated on a 7-point Likert scale. A two-tailed, paired-samples t-test was used to compare the groups’ motivation subscale mean scores for each teaching approach. The size of the effect for each group was calculated using Cohen’s d. To determine whether any significant differences between the subscale mean scores of the two groups was due to an order effect, a two-tailed, independent samples t test was used. Findings: Participants’ reported substantially higher levels of self-determination and intrinsic motivation during the CLA hurdles lesson compared to during the traditional hurdles lesson. Both groups reported significantly higher motivation subscale mean scores for competence, relatedness, autonomy, enjoyment and effort after experiencing the CLA than mean scores reported after experiencing the traditional approach. This significant difference was evident regardless of the order that each teaching approach was experienced. Conclusion: The theoretically based pedagogical principles of NLP that inform learning design and delivery of the CLA may provide teachers and coaches with tools to develop more functional pedagogical climates, which result in students exhibiting more intrinsically motivated behaviours during learning.
Resumo:
The numerical solution of fractional partial differential equations poses significant computational challenges in regard to efficiency as a result of the spatial nonlocality of the fractional differential operators. The dense coefficient matrices that arise from spatial discretisation of these operators mean that even one-dimensional problems can be difficult to solve using standard methods on grids comprising thousands of nodes or more. In this work we address this issue of efficiency for one-dimensional, nonlinear space-fractional reaction–diffusion equations with fractional Laplacian operators. We apply variable-order, variable-stepsize backward differentiation formulas in a Jacobian-free Newton–Krylov framework to advance the solution in time. A key advantage of this approach is the elimination of any requirement to form the dense matrix representation of the fractional Laplacian operator. We show how a banded approximation to this matrix, which can be formed and factorised efficiently, can be used as part of an effective preconditioner that accelerates convergence of the Krylov subspace iterative solver. Our approach also captures the full contribution from the nonlinear reaction term in the preconditioner, which is crucial for problems that exhibit stiff reactions. Numerical examples are presented to illustrate the overall effectiveness of the solver.