985 resultados para NOISE ASSESSMENT
Environmental assessment for commercial buildings: Stakeholder requirements and tool characteristics
Resumo:
The Cooperative Research Centre for Construction Innovation (CRC CI) is a national research, development and implementation centre focused on the needs of the property, design, construction and facility management sectors. Established in 2001 and headquartered at Queensland University of Technology as an unincorporated joint venture under the Australian Government's Cooperative Research Program, the CRC CI is developing key technologies, tools and management systems to improve the effectiveness of the construction industry. The CRC CI is a seven year project funded by a Commonwealth grant and industry, research and other government support. More than 150 researchers and an alliance of 19 leading partner organisations are involved in and support the activities of the CRC CI
Resumo:
Existing widely known environmental assessment models, primarily those for Life Cycle Assessment of manufactured products and buildings, were reviewed to grasp their characteristics, since the past several years have seen a significant increase in interest and research activity in the development of building environmental assessment methods. Each method or tool was assessed under the headings of description, data requirement, end-use, assessment criteria (scale of assessment and scoring/ weighting system)and present status
Resumo:
The main objective was to compare the environmental impacts of a building undergoing refurbishment both before and after the refurbishment and to assist in the design of the refurbishment with what is learned.
Resumo:
This feasibility study was established to investigate the application of the concept of ‘best value’ in construction procurement in Australia. In the case of ‘best value’ in the business enterprise, ‘best value’ is that which returns greatest value to the business enterprise’s shareholders. However, in the case of the public sector, ‘best value’ is more complex. For that reason, this research project focuses mainly on public sector construction project procurement.
Resumo:
A need for an efficient life care management of building portfolio is becoming increasingly due to increase in aging building infrastructure globally. Appropriate structural engineering practices along with facility management can assist in optimising the remaining life cycle costs for existing public building portfolio. A more precise decision to either demolish, refurbish, do nothing or rebuilt option for any typical building under investigation is needed. In order to achieve this, the status of health of the building needs to be assessed considering several aspects including economic and supply-demand considerations. An investment decision for a refurbishment project competing with other capital works and/or refurbishment projects can be supported by emerging methodology residual service life assessment. This paper discusses challenges in refurbishment projects of public buildings and with a view towards development of residual service life assessment methodology
Resumo:
The quality of office indoor environments is considered to consist of those factors that impact occupants according to their health and well-being and (by consequence) their productivity. Indoor Environment Quality (IEQ) can be characterized by four indicators: • Indoor air quality indicators • Thermal comfort indicators • Lighting indicators • Noise indicators. Within each indicator, there are specific metrics that can be utilized in determining an acceptable quality of an indoor environment based on existing knowledge and best practice. Examples of these metrics are: indoor air levels of pollutants or odorants; operative temperature and its control; radiant asymmetry; task lighting; glare; ambient noise. The way in which these metrics impact occupants is not fully understood, especially when multiple metrics may interact in their impacts. While the potential cost of lost productivity from poor IEQ has been estimated to exceed building operation costs, the level of impact and the relative significance of the above four indicators are largely unknown. However, they are key factors in the sustainable operation or refurbishment of office buildings. This paper presents a methodology for assessing indoor environment quality (IEQ) in office buildings, and indicators with related metrics for high performance and occupant comfort. These are intended for integration into the specification of sustainable office buildings as key factors to ensure a high degree of occupant habitability, without this being impaired by other sustainability factors. The assessment methodology was applied in a case study on IEQ in Australia’s first ‘six star’ sustainable office building, Council House 2 (CH2), located in the centre of Melbourne. The CH2 building was designed and built with specific focus on sustainability and the provision of a high quality indoor environment for occupants. Actual IEQ performance was assessed in this study by field assessment after construction and occupancy. For comparison, the methodology was applied to a 30 year old conventional building adjacent to CH2 which housed the same or similar occupants and activities. The impact of IEQ on occupant productivity will be reported in a separate future paper
Resumo:
This paper will report on the evaluation of a new undergraduate legal workplace unit, LWB421 Learning in Professional Practice. LWB421 was developed in response to the QUT’s strategic planning and a growing view that work experience is essential to developing the skills that law graduates need in order to be effective legal practitioners (Stuckey, 2007). Work integrated learning provides a context for students to develop their skills, to see the link between theory and practice and support students in making the transition from university to practice (Shirley, 2006). The literature in Australian legal education has given little consideration to the design of legal internship subjects (as distinct from legal clinic programs). Accordingly the design of placement subjects needs to be carefully considered to ensure alignment of learning objectives, learning tasks and assessment. Legal placements offer students the opportunity to develop their professional skills in practice, reflect on their own learning and job performance and take responsibility for their career development and planning. This paper will examine the literature relating to the design of placement subjects, particularly in a legal context. It will propose a collaborative model to facilitate learning and assessment of legal work placement subjects. The basis of the model is a negotiated learning contract between the student, workplace supervisor and academic supervisor. Finally the paper will evaluate the model in the context of LWB421. The evaluation will be based on data from surveys of students and supervisors and focus group sessions.
Resumo:
In urban environments road traffic volumes are increasing and the density of living is becoming higher. As a consequence the urban community is being exposed to increasing levels of road traffic noise. It is also evident that the noise reduction potential of within-the-road-reserve treatments such as noise barriers, mounding and pavement surfacing has been exhausted. This paper presents a strategy that involves the comparison of noise ameliorative treatments both within and outside the road reserve. The noise reduction resulting from the within-the-road-reserve component of treatments has been evaluated using a leading application of the CoRTN Model, developed by the UK Department of Transport 1988 [1], and the outside road reserve treatment has been evaluated in accordance with the Australian Standard 3671, Acoustics – Road traffic noise intrusion – Building sitting and construction [5]. The evaluation of noise treatments has been undertaken using a decision support tool (DST) currently being developed under the research program conducted at RMIT University and Department of Main Roads, Queensland. The case study has been based on data from a real project in Queensland, Australia. The research described here was carried out by the Australian Cooperative Research Centre for Construction Innovation [9], in collaboration with Department of Main Roads, Queensland, Department of Public Works, Queensland, Arup Pty. Ltd., Queensland University of technology and RMIT University.
Resumo:
Properly designed decision support environments encourage proactive and objective decision making. The work presented in this paper inquires into developing a decision support environment and a tool to facilitate objective decision making in dealing with road traffic noise. The decision support methodology incorporates traffic amelioration strategies both within and outside the road reserve. The project is funded by the CRC for Construction Innovation and conducted jointly by the RMIT University and the Queensland Department of Main Roads (MR) in collaboration with the Queensland Department of Public Works, Arup Pty Ltd., and the Queensland University of Technology. In this paper, the proposed decision support framework is presented in the way of a flowchart which enabled the development of the decision support tool (DST). The underpinning concept is to establish and retain an information warehouse for each critical road segment (noise corridor) for a given planning horizon. It is understood that, in current practice, some components of the approach described are already in place but not fully integrated and supported. It provides an integrated user-friendly interface between traffic noise modeling software, noise management criteria and cost databases.
Resumo:
Community awareness and the perception on the traffic noise related health impacts have increased significantly over the last decade resulting in a large volume of public inquiries flowing to Road Authorities for planning advice. Traffic noise management in the urban environment is therefore becoming a “social obligation”, essentially due to noise related health concerns. Although various aspects of urban noise pollution and mitigation have been researched independently, an integrated approach by stakeholders has not been attempted. Although the current treatment and mitigation strategies are predominantly handled by the Road Agencies, a concerted effort by all stakeholders is becoming mandatory for effective and tangible outcomes in the future. A research project is underway a RMIT University, Australia, led by the second author to consider the use of “hedonic pricing” for alternative noise amelioration treatments within the road reserve and outside the road reserve. The project aims to foster a full range noise abatement strategy encompassing source, path and noise receiver. The benefit of such a study would be to mitigate the problem where it is most effective and would defuse traditional “authority” boundaries to produce the optimum outcome. The project is conducted in collaboration with the Department of Main Roads Queensland, Australia and funded by the CRC for Construction Innovation. As part of this study, a comprehensive literature search is currently underway to investigate the advancements in community health research, related to environmental noise pollution, and the advancements in technical and engineering research in mitigating the issue. This paper presents the outcomes of this work outlining state of the art, national and international good practices and gap analysis to identify major anomalies and developments.
Resumo:
The road and transport industry in Australia and overseas has come a long way to understanding the impact of road traffic noise on the urban environment. Most road authorities now have guidelines to help assess and manage the impact of road traffic noise on noise-sensitive areas and development. While several economic studies across Australia and overseas have tried to value the impact of noise on property prices, decision-makers investing in road traffic noise management strategies have relatively limited historic data and case studies to go on. The perceived success of a noise management strategy currently relies largely on community expectations at a given time, and is not necessarily based on the analysis of the costs and benefits, or the long-term viability and value to the community of the proposed treatment options. With changing trends in urban design, it is essential that the 'whole-of-life' costs and benefits of noise ameliorative treatment options and strategies be identified and made available for decisionmakers in future investment considerations. For this reason, CRC for Construction Innovation Australia funded a research project, Noise Management in Urban Environments to help decision-makers with future road traffic noise management investment decisions. RMIT University and the Queensland Department of Main Roads (QDMR) have conducted the research work, in collaboration with the Queensland Department of Public Works, ARUP Pty Ltd, and the Queensland University of Technology. The research has formed the basis for the development of a decision-support software tool, and helped collate technical and costing data for known noise amelioration treatment options. We intend that the decision support software tool (DST) should help an investment decision-maker to be better informed of suitable noise ameliorative treatment options on a project-by-project basis and identify likely costs and benefits associated with each of those options. This handbook has been prepared as a procedural guide for conducting a comparative assessment of noise ameliorative options. The handbook outlines the methodology and assumptions adopted in the decision-support framework for the investment decision-maker and user of the DST. The DST has been developed to provide an integrated user-friendly interface between road traffic noise modelling software, the relevant assessment criteria and the options analysis process. A user guide for the DST is incorporated in this handbook.
Resumo:
Queensland Department of Main Roads, Australia, spends approximately A$ 1 billion annually for road infrastructure asset management. To effectively manage road infrastructure, firstly road agencies not only need to optimise the expenditure for data collection, but at the same time, not jeopardise the reliability in using the optimised data to predict maintenance and rehabilitation costs. Secondly, road agencies need to accurately predict the deterioration rates of infrastructures to reflect local conditions so that the budget estimates could be accurately estimated. And finally, the prediction of budgets for maintenance and rehabilitation must provide a certain degree of reliability. This paper presents the results of case studies in using the probability-based method for an integrated approach (i.e. assessing optimal costs of pavement strength data collection; calibrating deterioration prediction models that suit local condition and assessing risk-adjusted budget estimates for road maintenance and rehabilitation for assessing life-cycle budget estimates). The probability concept is opening the path to having the means to predict life-cycle maintenance and rehabilitation budget estimates that have a known probability of success (e.g. produce budget estimates for a project life-cycle cost with 5% probability of exceeding). The paper also presents a conceptual decision-making framework in the form of risk mapping in which the life-cycle budget/cost investment could be considered in conjunction with social, environmental and political issues.
Resumo:
This paper provides an overview of a new framework for a design stage Building Environmental Assessment (BEA) tool and a discussion of strategic responses to existing tool issues and relative stakeholder requirements that lead to the development of this tool founded on new information and communication technology (ICT) related to developments in 3D CAD technology. After introducing the context of the BEA and some of their team’s new work the authors • Critique current BEA tool theory; • Review previous assessments of stakeholder needs; • Introduce a new framework applied to analyse such tools • Highlight and key results considering illustrative ICT capabilities and • Discuss their potential significance upon BEA tool stakeholders.
Resumo:
The ability to assess a commercial building for its impact on the environment at the earliest stage of design is a goal which is achievable by integrating several approaches into a single procedure directly from the 3D CAD representation. Such an approach enables building design professionals to make informed decisions on the environmental impact of building and its alternatives during the design development stage instead of at the post-design stage where options become limited. The indicators of interest are those which relate to consumption of resources and energy, contributions to pollution of air, water and soil, and impacts on the health and wellbeing of people in the built environment as a result of constructing and operating buildings. 3D object-oriented CAD files contain a wealth of building information which can be interrogated for details required for analysis of the performance of a design. The quantities of all components in the building can be automatically obtained from the 3D CAD objects and their constituent materials identified to calculate a complete list of the amounts of all building products such as concrete, steel, timber, plastic etc. When this information is combined with a life cycle inventory database, key internationally recognised environmental indicators can be estimated. Such a fully integrated tool known as LCADesign has been created for automated ecoefficiency assessment of commercial buildings direct from 3D CAD. This paper outlines the key features of LCADesign and its application to environmental assessment of commercial buildings.
Resumo:
Buildings consume resources and energy, contribute to pollution of our air, water and soil, impact the health and well-being of populations and constitute an important part of the built environment in which we live. The ability to assess their design with a view to reducing that impact automatically from their 3D CAD representations enables building design professionals to make informed decisions on the environmental impact of building structures. Contemporary 3D object-oriented CAD files contain a wealth of building information. LCADesign has been designed as a fully integrated approach for automated eco-efficiency assessment of commercial buildings direct from 3D CAD. LCADesign accesses the 3D CAD detail through Industry Foundation Classes (IFCs) - the international standard file format for defining architectural and constructional CAD graphic data as 3D real-world objects - to permit construction professionals to interrogate these intelligent drawing objects for analysis of the performance of a design. The automated take-off provides quantities of all building components whose specific production processes, logistics and raw material inputs, where necessary, are identified to calculate a complete list of quantities for all products such as concrete, steel, timber, plastic etc and combines this information with the life cycle inventory database, to estimate key internationally recognised environmental indicators such as CML, EPS and Eco-indicator 99. This paper outlines the key modules of LCADesign and their role in delivering an automated eco-efficiency assessment for commercial buildings.