222 resultados para NODOS
Resumo:
Abstract The proliferation of wireless sensor networks and the variety of envisioned applications associated with them has motivated the development of distributed algorithms for collaborative processing over networked systems. One of the applications that has attracted the attention of the researchers is that of target localization where the nodes of the network try to estimate the position of an unknown target that lies within its coverage area. Particularly challenging is the problem of estimating the target’s position when we use received signal strength indicator (RSSI) due to the nonlinear relationship between the measured signal and the true position of the target. Many of the existing approaches suffer either from high computational complexity (e.g., particle filters) or lack of accuracy. Further, many of the proposed solutions are centralized which make their application to a sensor network questionable. Depending on the application at hand and, from a practical perspective it could be convenient to find a balance between localization accuracy and complexity. Into this direction we approach the maximum likelihood location estimation problem by solving a suboptimal (and more tractable) problem. One of the main advantages of the proposed scheme is that it allows for a decentralized implementation using distributed processing tools (e.g., consensus and convex optimization) and therefore, it is very suitable to be implemented in real sensor networks. If further accuracy is needed an additional refinement step could be performed around the found solution. Under the assumption of independent noise among the nodes such local search can be done in a fully distributed way using a distributed version of the Gauss-Newton method based on consensus. Regardless of the underlying application or function of the sensor network it is al¬ways necessary to have a mechanism for data reporting. While some approaches use a special kind of nodes (called sink nodes) for data harvesting and forwarding to the outside world, there are however some scenarios where such an approach is impractical or even impossible to deploy. Further, such sink nodes become a bottleneck in terms of traffic flow and power consumption. To overcome these issues instead of using sink nodes for data reporting one could use collaborative beamforming techniques to forward directly the generated data to a base station or gateway to the outside world. In a dis-tributed environment like a sensor network nodes cooperate in order to form a virtual antenna array that can exploit the benefits of multi-antenna communications. In col-laborative beamforming nodes synchronize their phases in order to add constructively at the receiver. Some of the inconveniences associated with collaborative beamforming techniques is that there is no control over the radiation pattern since it is treated as a random quantity. This may cause interference to other coexisting systems and fast bat-tery depletion at the nodes. Since energy-efficiency is a major design issue we consider the development of a distributed collaborative beamforming scheme that maximizes the network lifetime while meeting some quality of service (QoS) requirement at the re¬ceiver side. Using local information about battery status and channel conditions we find distributed algorithms that converge to the optimal centralized beamformer. While in the first part we consider only battery depletion due to communications beamforming, we extend the model to account for more realistic scenarios by the introduction of an additional random energy consumption. It is shown how the new problem generalizes the original one and under which conditions it is easily solvable. By formulating the problem under the energy-efficiency perspective the network’s lifetime is significantly improved. Resumen La proliferación de las redes inalámbricas de sensores junto con la gran variedad de posi¬bles aplicaciones relacionadas, han motivado el desarrollo de herramientas y algoritmos necesarios para el procesado cooperativo en sistemas distribuidos. Una de las aplicaciones que suscitado mayor interés entre la comunidad científica es la de localization, donde el conjunto de nodos de la red intenta estimar la posición de un blanco localizado dentro de su área de cobertura. El problema de la localization es especialmente desafiante cuando se usan niveles de energía de la seal recibida (RSSI por sus siglas en inglés) como medida para la localization. El principal inconveniente reside en el hecho que el nivel de señal recibida no sigue una relación lineal con la posición del blanco. Muchas de las soluciones actuales al problema de localization usando RSSI se basan en complejos esquemas centralizados como filtros de partículas, mientas que en otras se basan en esquemas mucho más simples pero con menor precisión. Además, en muchos casos las estrategias son centralizadas lo que resulta poco prácticos para su implementación en redes de sensores. Desde un punto de vista práctico y de implementation, es conveniente, para ciertos escenarios y aplicaciones, el desarrollo de alternativas que ofrezcan un compromiso entre complejidad y precisión. En esta línea, en lugar de abordar directamente el problema de la estimación de la posición del blanco bajo el criterio de máxima verosimilitud, proponemos usar una formulación subóptima del problema más manejable analíticamente y que ofrece la ventaja de permitir en¬contrar la solución al problema de localization de una forma totalmente distribuida, convirtiéndola así en una solución atractiva dentro del contexto de redes inalámbricas de sensores. Para ello, se usan herramientas de procesado distribuido como los algorit¬mos de consenso y de optimización convexa en sistemas distribuidos. Para aplicaciones donde se requiera de un mayor grado de precisión se propone una estrategia que con¬siste en la optimización local de la función de verosimilitud entorno a la estimación inicialmente obtenida. Esta optimización se puede realizar de forma descentralizada usando una versión basada en consenso del método de Gauss-Newton siempre y cuando asumamos independencia de los ruidos de medida en los diferentes nodos. Independientemente de la aplicación subyacente de la red de sensores, es necesario tener un mecanismo que permita recopilar los datos provenientes de la red de sensores. Una forma de hacerlo es mediante el uso de uno o varios nodos especiales, llamados nodos “sumidero”, (sink en inglés) que actúen como centros recolectores de información y que estarán equipados con hardware adicional que les permita la interacción con el exterior de la red. La principal desventaja de esta estrategia es que dichos nodos se convierten en cuellos de botella en cuanto a tráfico y capacidad de cálculo. Como alter¬nativa se pueden usar técnicas cooperativas de conformación de haz (beamforming en inglés) de manera que el conjunto de la red puede verse como un único sistema virtual de múltiples antenas y, por tanto, que exploten los beneficios que ofrecen las comu¬nicaciones con múltiples antenas. Para ello, los distintos nodos de la red sincronizan sus transmisiones de manera que se produce una interferencia constructiva en el recep¬tor. No obstante, las actuales técnicas se basan en resultados promedios y asintóticos, cuando el número de nodos es muy grande. Para una configuración específica se pierde el control sobre el diagrama de radiación causando posibles interferencias sobre sis¬temas coexistentes o gastando más potencia de la requerida. La eficiencia energética es una cuestión capital en las redes inalámbricas de sensores ya que los nodos están equipados con baterías. Es por tanto muy importante preservar la batería evitando cambios innecesarios y el consecuente aumento de costes. Bajo estas consideraciones, se propone un esquema de conformación de haz que maximice el tiempo de vida útil de la red, entendiendo como tal el máximo tiempo que la red puede estar operativa garantizando unos requisitos de calidad de servicio (QoS por sus siglas en inglés) que permitan una decodificación fiable de la señal recibida en la estación base. Se proponen además algoritmos distribuidos que convergen a la solución centralizada. Inicialmente se considera que la única causa de consumo energético se debe a las comunicaciones con la estación base. Este modelo de consumo energético es modificado para tener en cuenta otras formas de consumo de energía derivadas de procesos inherentes al funcionamiento de la red como la adquisición y procesado de datos, las comunicaciones locales entre nodos, etc. Dicho consumo adicional de energía se modela como una variable aleatoria en cada nodo. Se cambia por tanto, a un escenario probabilístico que generaliza el caso determinista y se proporcionan condiciones bajo las cuales el problema se puede resolver de forma eficiente. Se demuestra que el tiempo de vida de la red mejora de forma significativa usando el criterio propuesto de eficiencia energética.
Resumo:
La temperatura es una preocupación que juega un papel protagonista en el diseño de circuitos integrados modernos. El importante aumento de las densidades de potencia que conllevan las últimas generaciones tecnológicas ha producido la aparición de gradientes térmicos y puntos calientes durante el funcionamiento normal de los chips. La temperatura tiene un impacto negativo en varios parámetros del circuito integrado como el retardo de las puertas, los gastos de disipación de calor, la fiabilidad, el consumo de energía, etc. Con el fin de luchar contra estos efectos nocivos, la técnicas de gestión dinámica de la temperatura (DTM) adaptan el comportamiento del chip en función en la información que proporciona un sistema de monitorización que mide en tiempo de ejecución la información térmica de la superficie del dado. El campo de la monitorización de la temperatura en el chip ha llamado la atención de la comunidad científica en los últimos años y es el objeto de estudio de esta tesis. Esta tesis aborda la temática de control de la temperatura en el chip desde diferentes perspectivas y niveles, ofreciendo soluciones a algunos de los temas más importantes. Los niveles físico y circuital se cubren con el diseño y la caracterización de dos nuevos sensores de temperatura especialmente diseñados para los propósitos de las técnicas DTM. El primer sensor está basado en un mecanismo que obtiene un pulso de anchura variable dependiente de la relación de las corrientes de fuga con la temperatura. De manera resumida, se carga un nodo del circuito y posteriormente se deja flotando de tal manera que se descarga a través de las corrientes de fugas de un transistor; el tiempo de descarga del nodo es la anchura del pulso. Dado que la anchura del pulso muestra una dependencia exponencial con la temperatura, la conversión a una palabra digital se realiza por medio de un contador logarítmico que realiza tanto la conversión tiempo a digital como la linealización de la salida. La estructura resultante de esta combinación de elementos se implementa en una tecnología de 0,35 _m. El sensor ocupa un área muy reducida, 10.250 nm2, y consume muy poca energía, 1.05-65.5nW a 5 muestras/s, estas cifras superaron todos los trabajos previos en el momento en que se publicó por primera vez y en el momento de la publicación de esta tesis, superan a todas las implementaciones anteriores fabricadas en el mismo nodo tecnológico. En cuanto a la precisión, el sensor ofrece una buena linealidad, incluso sin calibrar; se obtiene un error 3_ de 1,97oC, adecuado para tratar con las aplicaciones de DTM. Como se ha explicado, el sensor es completamente compatible con los procesos de fabricación CMOS, este hecho, junto con sus valores reducidos de área y consumo, lo hacen especialmente adecuado para la integración en un sistema de monitorización de DTM con un conjunto de monitores empotrados distribuidos a través del chip. Las crecientes incertidumbres de proceso asociadas a los últimos nodos tecnológicos comprometen las características de linealidad de nuestra primera propuesta de sensor. Con el objetivo de superar estos problemas, proponemos una nueva técnica para obtener la temperatura. La nueva técnica también está basada en las dependencias térmicas de las corrientes de fuga que se utilizan para descargar un nodo flotante. La novedad es que ahora la medida viene dada por el cociente de dos medidas diferentes, en una de las cuales se altera una característica del transistor de descarga |la tensión de puerta. Este cociente resulta ser muy robusto frente a variaciones de proceso y, además, la linealidad obtenida cumple ampliamente los requisitos impuestos por las políticas DTM |error 3_ de 1,17oC considerando variaciones del proceso y calibrando en dos puntos. La implementación de la parte sensora de esta nueva técnica implica varias consideraciones de diseño, tales como la generación de una referencia de tensión independiente de variaciones de proceso, que se analizan en profundidad en la tesis. Para la conversión tiempo-a-digital, se emplea la misma estructura de digitalización que en el primer sensor. Para la implementación física de la parte de digitalización, se ha construido una biblioteca de células estándar completamente nueva orientada a la reducción de área y consumo. El sensor resultante de la unión de todos los bloques se caracteriza por una energía por muestra ultra baja (48-640 pJ) y un área diminuta de 0,0016 mm2, esta cifra mejora todos los trabajos previos. Para probar esta afirmación, se realiza una comparación exhaustiva con más de 40 propuestas de sensores en la literatura científica. Subiendo el nivel de abstracción al sistema, la tercera contribución se centra en el modelado de un sistema de monitorización que consiste de un conjunto de sensores distribuidos por la superficie del chip. Todos los trabajos anteriores de la literatura tienen como objetivo maximizar la precisión del sistema con el mínimo número de monitores. Como novedad, en nuestra propuesta se introducen nuevos parámetros de calidad aparte del número de sensores, también se considera el consumo de energía, la frecuencia de muestreo, los costes de interconexión y la posibilidad de elegir diferentes tipos de monitores. El modelo se introduce en un algoritmo de recocido simulado que recibe la información térmica de un sistema, sus propiedades físicas, limitaciones de área, potencia e interconexión y una colección de tipos de monitor; el algoritmo proporciona el tipo seleccionado de monitor, el número de monitores, su posición y la velocidad de muestreo _optima. Para probar la validez del algoritmo, se presentan varios casos de estudio para el procesador Alpha 21364 considerando distintas restricciones. En comparación con otros trabajos previos en la literatura, el modelo que aquí se presenta es el más completo. Finalmente, la última contribución se dirige al nivel de red, partiendo de un conjunto de monitores de temperatura de posiciones conocidas, nos concentramos en resolver el problema de la conexión de los sensores de una forma eficiente en área y consumo. Nuestra primera propuesta en este campo es la introducción de un nuevo nivel en la jerarquía de interconexión, el nivel de trillado (o threshing en inglés), entre los monitores y los buses tradicionales de periféricos. En este nuevo nivel se aplica selectividad de datos para reducir la cantidad de información que se envía al controlador central. La idea detrás de este nuevo nivel es que en este tipo de redes la mayoría de los datos es inútil, porque desde el punto de vista del controlador sólo una pequeña cantidad de datos |normalmente sólo los valores extremos| es de interés. Para cubrir el nuevo nivel, proponemos una red de monitorización mono-conexión que se basa en un esquema de señalización en el dominio de tiempo. Este esquema reduce significativamente tanto la actividad de conmutación sobre la conexión como el consumo de energía de la red. Otra ventaja de este esquema es que los datos de los monitores llegan directamente ordenados al controlador. Si este tipo de señalización se aplica a sensores que realizan conversión tiempo-a-digital, se puede obtener compartición de recursos de digitalización tanto en tiempo como en espacio, lo que supone un importante ahorro de área y consumo. Finalmente, se presentan dos prototipos de sistemas de monitorización completos que de manera significativa superan la características de trabajos anteriores en términos de área y, especialmente, consumo de energía. Abstract Temperature is a first class design concern in modern integrated circuits. The important increase in power densities associated to recent technology evolutions has lead to the apparition of thermal gradients and hot spots during run time operation. Temperature impacts several circuit parameters such as speed, cooling budgets, reliability, power consumption, etc. In order to fight against these negative effects, dynamic thermal management (DTM) techniques adapt the behavior of the chip relying on the information of a monitoring system that provides run-time thermal information of the die surface. The field of on-chip temperature monitoring has drawn the attention of the scientific community in the recent years and is the object of study of this thesis. This thesis approaches the matter of on-chip temperature monitoring from different perspectives and levels, providing solutions to some of the most important issues. The physical and circuital levels are covered with the design and characterization of two novel temperature sensors specially tailored for DTM purposes. The first sensor is based upon a mechanism that obtains a pulse with a varying width based on the variations of the leakage currents on the temperature. In a nutshell, a circuit node is charged and subsequently left floating so that it discharges away through the subthreshold currents of a transistor; the time the node takes to discharge is the width of the pulse. Since the width of the pulse displays an exponential dependence on the temperature, the conversion into a digital word is realized by means of a logarithmic counter that performs both the timeto- digital conversion and the linearization of the output. The structure resulting from this combination of elements is implemented in a 0.35_m technology and is characterized by very reduced area, 10250 nm2, and power consumption, 1.05-65.5 nW at 5 samples/s, these figures outperformed all previous works by the time it was first published and still, by the time of the publication of this thesis, they outnumber all previous implementations in the same technology node. Concerning the accuracy, the sensor exhibits good linearity, even without calibration it displays a 3_ error of 1.97oC, appropriate to deal with DTM applications. As explained, the sensor is completely compatible with standard CMOS processes, this fact, along with its tiny area and power overhead, makes it specially suitable for the integration in a DTM monitoring system with a collection of on-chip monitors distributed across the chip. The exacerbated process fluctuations carried along with recent technology nodes jeop-ardize the linearity characteristics of the first sensor. In order to overcome these problems, a new temperature inferring technique is proposed. In this case, we also rely on the thermal dependencies of leakage currents that are used to discharge a floating node, but now, the result comes from the ratio of two different measures, in one of which we alter a characteristic of the discharging transistor |the gate voltage. This ratio proves to be very robust against process variations and displays a more than suficient linearity on the temperature |1.17oC 3_ error considering process variations and performing two-point calibration. The implementation of the sensing part based on this new technique implies several issues, such as the generation of process variations independent voltage reference, that are analyzed in depth in the thesis. In order to perform the time-to-digital conversion, we employ the same digitization structure the former sensor used. A completely new standard cell library targeting low area and power overhead is built from scratch to implement the digitization part. Putting all the pieces together, we achieve a complete sensor system that is characterized by ultra low energy per conversion of 48-640pJ and area of 0.0016mm2, this figure outperforms all previous works. To prove this statement, we perform a thorough comparison with over 40 works from the scientific literature. Moving up to the system level, the third contribution is centered on the modeling of a monitoring system consisting of set of thermal sensors distributed across the chip. All previous works from the literature target maximizing the accuracy of the system with the minimum number of monitors. In contrast, we introduce new metrics of quality apart form just the number of sensors; we consider the power consumption, the sampling frequency, the possibility to consider different types of monitors and the interconnection costs. The model is introduced in a simulated annealing algorithm that receives the thermal information of a system, its physical properties, area, power and interconnection constraints and a collection of monitor types; the algorithm yields the selected type of monitor, the number of monitors, their position and the optimum sampling rate. We test the algorithm with the Alpha 21364 processor under several constraint configurations to prove its validity. When compared to other previous works in the literature, the modeling presented here is the most complete. Finally, the last contribution targets the networking level, given an allocated set of temperature monitors, we focused on solving the problem of connecting them in an efficient way from the area and power perspectives. Our first proposal in this area is the introduction of a new interconnection hierarchy level, the threshing level, in between the monitors and the traditional peripheral buses that applies data selectivity to reduce the amount of information that is sent to the central controller. The idea behind this new level is that in this kind of networks most data are useless because from the controller viewpoint just a small amount of data |normally extreme values| is of interest. To cover the new interconnection level, we propose a single-wire monitoring network based on a time-domain signaling scheme that significantly reduces both the switching activity over the wire and the power consumption of the network. This scheme codes the information in the time domain and allows a straightforward obtention of an ordered list of values from the maximum to the minimum. If the scheme is applied to monitors that employ TDC, digitization resource sharing is achieved, producing an important saving in area and power consumption. Two prototypes of complete monitoring systems are presented, they significantly overcome previous works in terms of area and, specially, power consumption.
Resumo:
Nowadays, Computational Fluid Dynamics (CFD) solvers are widely used within the industry to model fluid flow phenomenons. Several fluid flow model equations have been employed in the last decades to simulate and predict forces acting, for example, on different aircraft configurations. Computational time and accuracy are strongly dependent on the fluid flow model equation and the spatial dimension of the problem considered. While simple models based on perfect flows, like panel methods or potential flow models can be very fast to solve, they usually suffer from a poor accuracy in order to simulate real flows (transonic, viscous). On the other hand, more complex models such as the full Navier- Stokes equations provide high fidelity predictions but at a much higher computational cost. Thus, a good compromise between accuracy and computational time has to be fixed for engineering applications. A discretisation technique widely used within the industry is the so-called Finite Volume approach on unstructured meshes. This technique spatially discretises the flow motion equations onto a set of elements which form a mesh, a discrete representation of the continuous domain. Using this approach, for a given flow model equation, the accuracy and computational time mainly depend on the distribution of nodes forming the mesh. Therefore, a good compromise between accuracy and computational time might be obtained by carefully defining the mesh. However, defining an optimal mesh for complex flows and geometries requires a very high level expertize in fluid mechanics and numerical analysis, and in most cases a simple guess of regions of the computational domain which might affect the most the accuracy is impossible. Thus, it is desirable to have an automatized remeshing tool, which is more flexible with unstructured meshes than its structured counterpart. However, adaptive methods currently in use still have an opened question: how to efficiently drive the adaptation ? Pioneering sensors based on flow features generally suffer from a lack of reliability, so in the last decade more effort has been made in developing numerical error-based sensors, like for instance the adjoint-based adaptation sensors. While very efficient at adapting meshes for a given functional output, the latter method is very expensive as it requires to solve a dual set of equations and computes the sensor on an embedded mesh. Therefore, it would be desirable to develop a more affordable numerical error estimation method. The current work aims at estimating the truncation error, which arises when discretising a partial differential equation. These are the higher order terms neglected in the construction of the numerical scheme. The truncation error provides very useful information as it is strongly related to the flow model equation and its discretisation. On one hand, it is a very reliable measure of the quality of the mesh, therefore very useful in order to drive a mesh adaptation procedure. On the other hand, it is strongly linked to the flow model equation, so that a careful estimation actually gives information on how well a given equation is solved, which may be useful in the context of _ -extrapolation or zonal modelling. The following work is organized as follows: Chap. 1 contains a short review of mesh adaptation techniques as well as numerical error prediction. In the first section, Sec. 1.1, the basic refinement strategies are reviewed and the main contribution to structured and unstructured mesh adaptation are presented. Sec. 1.2 introduces the definitions of errors encountered when solving Computational Fluid Dynamics problems and reviews the most common approaches to predict them. Chap. 2 is devoted to the mathematical formulation of truncation error estimation in the context of finite volume methodology, as well as a complete verification procedure. Several features are studied, such as the influence of grid non-uniformities, non-linearity, boundary conditions and non-converged numerical solutions. This verification part has been submitted and accepted for publication in the Journal of Computational Physics. Chap. 3 presents a mesh adaptation algorithm based on truncation error estimates and compares the results to a feature-based and an adjoint-based sensor (in collaboration with Jorge Ponsín, INTA). Two- and three-dimensional cases relevant for validation in the aeronautical industry are considered. This part has been submitted and accepted in the AIAA Journal. An extension to Reynolds Averaged Navier- Stokes equations is also included, where _ -estimation-based mesh adaptation and _ -extrapolation are applied to viscous wing profiles. The latter has been submitted in the Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. Keywords: mesh adaptation, numerical error prediction, finite volume Hoy en día, la Dinámica de Fluidos Computacional (CFD) es ampliamente utilizada dentro de la industria para obtener información sobre fenómenos fluidos. La Dinámica de Fluidos Computacional considera distintas modelizaciones de las ecuaciones fluidas (Potencial, Euler, Navier-Stokes, etc) para simular y predecir las fuerzas que actúan, por ejemplo, sobre una configuración de aeronave. El tiempo de cálculo y la precisión en la solución depende en gran medida de los modelos utilizados, así como de la dimensión espacial del problema considerado. Mientras que modelos simples basados en flujos perfectos, como modelos de flujos potenciales, se pueden resolver rápidamente, por lo general aducen de una baja precisión a la hora de simular flujos reales (viscosos, transónicos, etc). Por otro lado, modelos más complejos tales como el conjunto de ecuaciones de Navier-Stokes proporcionan predicciones de alta fidelidad, a expensas de un coste computacional mucho más elevado. Por lo tanto, en términos de aplicaciones de ingeniería se debe fijar un buen compromiso entre precisión y tiempo de cálculo. Una técnica de discretización ampliamente utilizada en la industria es el método de los Volúmenes Finitos en mallas no estructuradas. Esta técnica discretiza espacialmente las ecuaciones del movimiento del flujo sobre un conjunto de elementos que forman una malla, una representación discreta del dominio continuo. Utilizando este enfoque, para una ecuación de flujo dado, la precisión y el tiempo computacional dependen principalmente de la distribución de los nodos que forman la malla. Por consiguiente, un buen compromiso entre precisión y tiempo de cálculo se podría obtener definiendo cuidadosamente la malla, concentrando sus elementos en aquellas zonas donde sea estrictamente necesario. Sin embargo, la definición de una malla óptima para corrientes y geometrías complejas requiere un nivel muy alto de experiencia en la mecánica de fluidos y el análisis numérico, así como un conocimiento previo de la solución. Aspecto que en la mayoría de los casos no está disponible. Por tanto, es deseable tener una herramienta que permita adaptar los elementos de malla de forma automática, acorde a la solución fluida (remallado). Esta herramienta es generalmente más flexible en mallas no estructuradas que con su homóloga estructurada. No obstante, los métodos de adaptación actualmente en uso todavía dejan una pregunta abierta: cómo conducir de manera eficiente la adaptación. Sensores pioneros basados en las características del flujo en general, adolecen de una falta de fiabilidad, por lo que en la última década se han realizado grandes esfuerzos en el desarrollo numérico de sensores basados en el error, como por ejemplo los sensores basados en el adjunto. A pesar de ser muy eficientes en la adaptación de mallas para un determinado funcional, este último método resulta muy costoso, pues requiere resolver un doble conjunto de ecuaciones: la solución y su adjunta. Por tanto, es deseable desarrollar un método numérico de estimación de error más asequible. El presente trabajo tiene como objetivo estimar el error local de truncación, que aparece cuando se discretiza una ecuación en derivadas parciales. Estos son los términos de orden superior olvidados en la construcción del esquema numérico. El error de truncación proporciona una información muy útil sobre la solución: es una medida muy fiable de la calidad de la malla, obteniendo información que permite llevar a cabo un procedimiento de adaptación de malla. Está fuertemente relacionado al modelo matemático fluido, de modo que una estimación precisa garantiza la idoneidad de dicho modelo en un campo fluido, lo que puede ser útil en el contexto de modelado zonal. Por último, permite mejorar la precisión de la solución resolviendo un nuevo sistema donde el error local actúa como término fuente (_ -extrapolación). El presenta trabajo se organiza de la siguiente manera: Cap. 1 contiene una breve reseña de las técnicas de adaptación de malla, así como de los métodos de predicción de los errores numéricos. En la primera sección, Sec. 1.1, se examinan las estrategias básicas de refinamiento y se presenta la principal contribución a la adaptación de malla estructurada y no estructurada. Sec 1.2 introduce las definiciones de los errores encontrados en la resolución de problemas de Dinámica Computacional de Fluidos y se examinan los enfoques más comunes para predecirlos. Cap. 2 está dedicado a la formulación matemática de la estimación del error de truncación en el contexto de la metodología de Volúmenes Finitos, así como a un procedimiento de verificación completo. Se estudian varias características que influyen en su estimación: la influencia de la falta de uniformidad de la malla, el efecto de las no linealidades del modelo matemático, diferentes condiciones de contorno y soluciones numéricas no convergidas. Esta parte de verificación ha sido presentada y aceptada para su publicación en el Journal of Computational Physics. Cap. 3 presenta un algoritmo de adaptación de malla basado en la estimación del error de truncación y compara los resultados con sensores de featured-based y adjointbased (en colaboración con Jorge Ponsín del INTA). Se consideran casos en dos y tres dimensiones, relevantes para la validación en la industria aeronáutica. Este trabajo ha sido presentado y aceptado en el AIAA Journal. También se incluye una extensión de estos métodos a las ecuaciones RANS (Reynolds Average Navier- Stokes), en donde adaptación de malla basada en _ y _ -extrapolación son aplicados a perfiles con viscosidad de alas. Este último trabajo se ha presentado en los Actas de la Institución de Ingenieros Mecánicos, Parte G: Journal of Aerospace Engineering. Palabras clave: adaptación de malla, predicción del error numérico, volúmenes finitos
Resumo:
Ideas básicas: reducción del medio contínuo a discreto (elementos, nodos y funciones de forma); definición de un estado "elemental" relacionado con otro "general", mediante el formalismo "matriz de rigidez" y vectores consistentes; método de síntesis de propiedades generales: método directo de la rigidez. Posibilidades de estudio: derivación de la teoría, modelización de problemas reales con F.E.M., desarrollo de programas de ordenador, estudio de métodos numéricos (sistemas ecuacionales, autovalores, convergencia, integración etc.). Contrariamente a lo que se diga el F.E.M. no elimina la necesidad de profundizar en el estudio de la elasticidad, matemáticas, etc. Se trata tan sólo de un instrumento potentísimo que, en principio, permite abordar cualquier problema.
Resumo:
Si una red inalámbrica de sensores se implementa en un entorno hostil, las limitaciones intrínsecas a los nodos conllevan muchos problemas de seguridad. En este artículo se aborda un ataque particular a los protocolos de localización y descubrimiento de vecinos, llevada a cabo por dos nodos que actúan en connivencia y establecen un "agujero de gusano" para tratar de engañar a un nodo aislado, haciéndole creer que se encuentra en la vecindad de un conjunto de nodos locales. Para contrarrestar este tipo de amenazas, se presenta un marco de actuación genéricamente denominado "detection of wormhole attacks using range-free methods" (DWARF) dentro del cual derivamos dos estrategias para de detección de agujeros de gusano: el primer enfoque (DWARFLoc) realiza conjuntamente la localización y la detección de ataques, mientras que el otro (DWARFTest) valida la posición estimada por el nodo una vez finalizado el protocolo de localización. Las simulaciones muestran que ambas estrategias son eficaces en la detección de ataques tipo "agujero de gusano", y sus prestaciones se comparan con las de un test convencional basado en la razón de verosimilitudes.
Resumo:
En la actualidad las redes de Pequeño Mundo están presentes en muchas aplicaciones distribuidas, pudiéndose construir estas redes añadiendo, a un grafo base, enlaces de largo alcance tomados conforme a una determinada distribución de probabiblidad. Los sistemas distribuidos actuales utilizan soluciones ad hoc específicas para calcular los enlaces de largo alcance. En este artículo proponemos un nuevo algoritmo distribuido llamado Selección Sesgada (SS), que utilizando únicamente un servicio de muestreo uniforme (que puede estar implementado mediante un protocolo gossip), es capaz de seleccionar enlaces largos conforme a cualquier distribución de probabilidad. SS es un algoritmo iterativo que dispone de un único parámetro (r) para indicar el número de iteraciones que debe ejecutarse. Se ha probado que la muestra obtenida con el algoritmo SS converge a la distribución objetivo a medida que aumenta el valor de r. También se ha calculado la cota analítica del error relativo máximo, para un determinado valor de r. Aunque este artículo se propone para el algoritmo SS como una herramienta para tomar muestras de nodos en una red, puede emplearse en cualquier contexto en el que sea necesario realizar un muestreo conforme a una determinada distribución de probabilidad, necesitando para funcionar únicamente un servicio de muestreo uniforme. Se han construido redes de Pequeño Mundo, modelo Kleinberg, utilizando SS para escoger los enlaces (vecinos) de largo alcance en estructuras de tipo toro. Hemos observado que con un número reducido de iteraciones (1) SS tiene un comportamiento muy similar a la distribución armónica de Kleinberg y (2) el número medio de saltos, utilizando enrutamiento ávido, no es peor que en una red construida con la distribución de Leinberg. También se ha observado que antes de obtener la convergencia, el número medio de saltos es menor que en las redes construidas mediante la distribución armónica de Leinberg (14% mejor en un toro de 1000 x 1000).
Resumo:
Las arquitecturas jerárquicas de comunicación causal se presentan como una alternativa habitual para reducir el elevado tamaño de la información de control causal a enviar en cada mensaje, cuando la comunicación se realiza entre un subconjunto de procesos que pertenecen a un grupo muy numeroso. Sin embargo, en estas arquitecturas, los nodos intermedios de la jerarquía padecen un efecto indeseable denominado efecto convoy. Estos nodos intermedios tienden a generar ráfagas de envíos que sobrecargan tanto a los nodos de los niveles inferiores de la jerarquía como a la red, provocando pérdidas de mensajes y periodos entre ráfagas de infrautilización de la red. Este artículo presenta un servicio causal bidireccional sin contención que, aplicado a los nodos intermedios de la jerarquía, soluciona el efecto convoy. Este servicio causal sin contención entrega a la capa de aplicación y envía al sistema un mensaje sin esperar la entrega o el envío previo de mensajes que constituyen la historia causal del primero, por lo que evita las ráfagas de entrega y de envío de mensajes. La entrega de un mensaje va acompañada de un identificador causal, que es un número natural que indica el número de orden de ese mensaje en la secuencia causal total. El envío de un mensaje supone construir un vector causal válido a partir de un identiificador causal, que permita ordenar dicho mensaje en orden causal en el proceso receptor.
Resumo:
Cada vez con más frecuencia los procesos de diseño y fabricación de componentes mecánicos demandan herramientas de simulación que permitan el estudio dinámico de mecanismos con piezas deformables. Esto plantea dificultades numéricas debidas fundamentalmente al carácter no lineal de la dinámica de estos dispositivos; no linealidad fundamentalmente geométrica asociada a los grandes desplazamientos y/o grandes deformaciones. Existen en la literatura modelos de vigas no lineales capaces de resolver con precisión este tipo de problemas, aunque suelen ser computacionalmente costosos. Este trabajo pretende explorar la posibilidad de sustituir los elementos continuos deformables tipo viga por otros equivalentes formados por elementos rígidos interconectados con una flexibilidad discreta concentrada en los nodos. De esta manera, se pretende sustituir elementos que tienen una flexibilidad continua por otros equivalentes que la tienen discreta, concentrada en las articulaciones. Existen precedentes de estudios de discretización de vigas en barras rígidas unidas por muelles y resortes de flexión [3]. La novedad de este trabajo es que representa la rigidez a flexión y tracción mediante potenciales de penalización asociados a restricciones. Se estudiará una viga biapoyada sencilla en pequeñas deformaciones para establecer una equivalencia entre la viga continua y la viga discretizada con restricciones que representan la flexión. Para ello se obtendrá una relación entre la penalización a emplear y las características mecánicas de la viga y su discretización. El modelo resultante se implementará en un entorno de cálculo de C++, disponible en el grupo de investigación, para realizar diferentes cálculos que permitan evaluar los resultados.
Resumo:
En las últimas décadas el mundo ha sufrido un aumento exponencial en la utilización de soluciones tecnológicas, lo que ha desembocado en la necesidad de medir situaciones o estados de los distintos objetos que nos rodean. A menudo, no es posible cablear determinados sensores por lo que ese aumento en la utilización de soluciones tecnológicas, se ha visto traducido en un aumento de la necesidad de utilización de sensórica sin cables para poder hacer telemetrías correctas. A nivel social, el aumento de la demografía mundial está estrechamente ligado al aumento de la necesidad de servicios tecnológicos, por lo que es lógico pensar que a más habitantes, más tecnología será consumida. El objetivo de este Proyecto Final de Carrera está basado en la utilización de diversos nodos o también llamados motas capaces de realizar transferencia de datos en modo sin cables, permitiendo así realizar una aplicación real que solvente problemas generados por el aumento de la densidad de población. En concreto se busca la realización de un sistema de aparcamiento inteligente para estacionamientos en superficie, ayudando por tanto a las tareas de ordenación vehicular dentro del marco de las Smart cities. El sistema está basado en el protocolo de comunicaciones 802.15.4 (ZigBee) cuyas características fundamentales radican en el bajo consumo de energía de los componentes hardware asociados. En primer lugar se realizará un Estado del Arte de las Redes Inalámbricas de Sensores, abordando tanto la arquitectura como el estándar Zigbee y finalmente los componentes XBee que se van a utilizar en este Proyecto. Seguidamente se realizará la algoritmia necesaria para el buen funcionamiento del sistema inteligente de estacionamiento y finalmente se realizará un piloto demostrador del correcto funcionamiento de la tecnología. ABSTRACT In the last decades the world has experienced an exponential increase in the use of technological solutions, which has resulted in the need to measure situations or states of the objects around us. Often, wired sensors cannot be used at many situations, so the increase in the use of technological solutions, has been translated into a increase of the need of using wireless sensors to make correct telemetries. At the social level, the increase in global demographics is closely linked to the increased need for technological services, so it is logical that more people, more technology will be consumed. The objective of this Final Project is based on the use of various nodes or so-called motes, capable of performing data transfer in wireless mode, thereby allowing performing a real application solving problems generated by the increase of population densities. Specifically looking for the realization of a smart outdoor parking system, thus helping to vehicular management tasks within the framework of the Smart Cities. The system is based on the communication protocol 802.15.4 (ZigBee) whose main characteristics lie in the low energy consumption associated to the hardware components. First there will be a State of the Art of Wireless Sensor Networks, addressing both architecture and finally the Zigbee standard XBee components to be used in this project. Then the necessary algorithms will be developed for the proper working of the intelligent parking system and finally there will be a pilot demonstrator validating the whole system.
Resumo:
Las redes inalámbricas están experimentando un gran crecimiento en el campo de la instrumentación electrónica. En concreto las redes de sensores inalámbricas (WSN de Wireless Sensor Network) suponen la opción más ventajosa para su empleo en la instrumentación electrónica ya que sus principales características se acoplan perfectamente a las necesidades. Las WSN permiten la utilización de un número relativamente alto de nodos, están orientadas a sistemas de bajo consumo y funcionamiento con baterías y poseen un ancho de banda adecuado para las necesidades de la instrumentación electrónica. En este proyecto fin de carrera se ha realizado un estudio de las tecnologías inalámbricas disponibles, se han comparado y se ha elegido la tecnología ZigBeeTM por considerarse la más adecuada y la que más se ajusta a las necesidades descritas. En el desarrollo de mi vida profesional se han conectado dos campos teóricamente distantes como son la instrumentación electrónica y la ingeniería civil. En este proyecto se hace una descripción de la instrumentación que se utiliza para controlar estructuras como presas, túneles y puentes y se proponen casos prácticos en los que las redes WSN aportan valor añadido a instrumentación actual y a los sistemas de comunicaciones utilizados. Se definen tanto los sistemas de comunicaciones utilizados actualmente como una serie de sensores utilizados para medir los principales parámetros a controlar en una obra civil. Por último se ha desarrollado una aplicación de prueba de una red ZigBeeTM basada en equipos comerciales del fabricante Digi. consiste en una aplicación desarrollada en entorno web que maneja de forma remota, a través de Internet, las entradas y salidas digitales y analógicas de los nodos que forman la red. Se forma una red ZigBeeTM con un coordinador, un router y un dispositivo final. El Coordinador está integrado en un Gateway que permite acceder a la red ZigBeeTM a través de internet y conocer el estado de los nodos que forman la red. Con los comandos adecuados se puede leer el estado de las entradas y salidas analógicas y digitales y cambiar el estado de una salida digital. ABSTRACT. Wireless networks are experiencing tremendous growth in the field of electronic instrumentation. In particular wireless sensor networks represent the most advantageous for use in electronic instrumentation since its main characteristics fit perfectly to the needs. The WSN allow the use of a relatively large number of nodes, are aimed at low-power systems and battery operation and have an adequate bandwidth for the needs of electronic instrumentation. In this project has made a study of available wireless technologies have been compared and chosen ZigBeeTM technology was considered the most appropriate to the needs described. In the course of my professional life have connected two fields are theoretically distant as electronic instrumentation and civil engineering. In this project, there is a description of the instrumentation used to control structures such as dams, tunnels and bridges and proposes practical cases in which WSN networks add value to current instrumentation and communications systems used. There are defined as communications systems now being used as a set of sensors used to measure the main parameters to be controlled in a civil structure. Finally, I have developed a test application based ZigBeeTM networking equipment maker Digi trading. It consists of a Web-based application developed to manage remotely, via the Internet, the digital and analog inputs and outputs nodes forming the network. ZigBeeTM It forms a network with a coordinator, router and end device. The Coordinator is built into a gateway that allows access to the ZigBeeTM network through internet and know the status of the nodes forming the network. With the appropriate command can read the status of the digital inputs and outputs and change the state of a digital output.
Resumo:
Los Sistemas de SHM o de monitorización de la integridad estructural surgen ante la necesidad de mejorar los métodos de evaluación y de test no destructivos convencionales. De esta manera, se puede tener controlado todo tipo de estructuras en las cuales su correcto estado o funcionamiento suponga un factor crítico. Un Sistema SHM permite analizar una estructura concreta capturando de manera periódica el estado de la integridad estructural, que en este proyecto se ha aplicado a estructuras aeronáuticas. P.A.M.E.L.A. (Phase Array Monitoring for Enhanced Life Assessment) es la denominación utilizada para definir una serie de equipos electrónicos para Sistemas SHM desarrollados por AERNOVA y los Grupos de Diseño Electrónico de las universidades UPV/EHU y UPM. Los dispositivos P.A.M.E.L.A. originalmente no cuentan con tecnología Wi-Fi, por lo que incorporan un módulo hardware independiente que se encarga de las comunicaciones inalámbricas, a los que se les denomina Nodos. Estos Nodos poseen un Sistema Operativo propio y todo lo necesario para administrar y organizar la red Mallada Wi-Fi. De esta manera se obtiene una red mallada inalámbrica compuesta por Nodos que interconectan los Sistemas SHM y que se encargan de transmitir los datos a los equipos que procesan los resultados adquiridos por P.A.M.E.L.A. Los Nodos son dispositivos empotrados que llevan instalados un firmware basado en una distribución de Linux para Nodos (o Routers), llamado Openwrt. Que para disponer de una red mallada necesitan de un protocolo orientado a este tipo de redes. Entre las opciones de protocolo más destacadas se puede mencionar: DSDV (Destination Sequenced Distance Vector), OLSR (Optimized Link State Routing), B.A.T.M.A.N-Adv (Better Approach To Mobile Adhoc Networking Advance), BMX (una versión de B.A.T.M.A.N-Adv), AODV (Ad hoc On-Demand Distance Vector) y el DSR (Dynamic Source Routing). Además de la existencia de protocolos orientados a las redes malladas, también hay organizaciones que se dedican a desarrollar firmware que los utilizan, como es el caso del firmware llamado Nightwing que utiliza BMX, Freifunk que utiliza OLSR o Potato Mesh que utiliza B.A.T.M.A.N-Adv. La ventaja de estos tres firmwares mencionados es que las agrupaciones que las desarrollan proporcionan las imágenes precompiladas del sistema,listas para cargarlas en distintos modelos de Nodos. En este proyecto se han instalado las imágenes en los Nodos y se han probado los protocolos BMX, OLSR y B.A.T.M.A.N.-Adv. Concluyendo que la red gestionada por B.A.T.M.A.N.-Adv era la que mejor rendimiento obtenía en cuanto a estabilidad y ancho de banda. Después de haber definido el protocolo a usar, se procedió a desarrollar una distribución basada en Openwrt, que utilice B.A.T.M.A.N.-Adv para crear la red mallada, pero que se ajuste mejor a las necesidades del proyecto, ya que Nightwing, Freifunk y Potato Mesh no lo hacían. Además se implementan aplicaciones en lenguaje ANSI C y en LabVIEW para interactuar con los Nodos y los Sistemas SHM. También se procede a hacer alguna modificación en el Hardware de P.A.M.E.L.A. y del Nodo para obtener una mejor integración entre los dos dispositivos. Y por ultimo, se prueba la transferencia de datos de los Nodos en distintos escenarios. ABSTRACT. Structural Health Monitoring (SHM) systems arise from the need of improving assessment methods and conventional nondestructive tests. Critical structures can be monitored using SHM. A SHM system analyzes periodically a specific structure capturing the state of structural integrity. The aim of this project is to contribute in the implementation of Mesh network for SHM system in aircraft structures. P.A.M.E.L.A. (Phase Array Monitoring for Enhanced Life Assessment) is the name for electronic equipment developed by AERNOVA, the Electronic Design Groups of university UPV/EHU and the Instrumentation and Applied Acoustics research group from UPM. P.A.M.E.L.A. devices were not originally equipped with Wi-Fi interface. In this project a separate hardware module that handles wireless communications (nodes) has been added. The nodes include an operating system for manage the Wi-Fi Mesh Network and they form the wireless mesh network to link SHM systems with monitoring equipment. Nodes are embedded devices with an installed firmware based on special Linux distribution used in routers or nodes, called OpenWRT. They need a Mesh Protocol to stablish the network. The most common protocols options are: DSDV (Destination Sequenced Distance Vector), OLSR (Optimized Link State Routing), BATMAN-Adv (Better Approach To Mobile Ad-hoc Networking Advance), BMX (a version of BATMAN-Adv) AODV (Ad hoc on-Demand Distance Vector) and DSR (Dynamic Source Routing). In addition, there are organizations that are dedicated to develope firmware using these Mesh Protocols, for instance: Nightwing uses BMX, Freifunk use OLSR and Potato Mesh uses BATMAN-Adv. The advantage of these three firmwares is that these groups develop pre-compiled images of the system ready to be loaded in several models of Nodes. In this project the images were installed in the nodes. In this way, BMX, OLSR and BATMAN-Adv have been tested. We conclude that the protocol BATMAN-Adv has better performance in terms of stability and bandwidth. After choosing the protocol, the objective was to develop a distribution based on OpenWRT, using BATMAN-Adv to create the mesh network. This distribution is fitted to the requirements of this project. Besides, in this project it has been developed applications in C language and LabVIEW to interact with the Nodes and the SHM systems. The project also address some modifications to the PAMELA hardware and the Node, for better integration between both elements. Finally, data transfer tests among the different nodes in different scenarios has been carried out.
Resumo:
Digital services and communications in vehicular scenarios provide the essential assets to improve road transport in several ways like reducing accidents, improving traffic efficiency and optimizing the transport of goods and people. Vehicular communications typically rely on VANET (Vehicular Ad hoc Networks). In these networks vehicles communicate with each other without the need of infrastructure. VANET are mainly oriented to disseminate information to the vehicles in certain geographic area for time critical services like safety warnings but present very challenging requirements that have not been successfully fulfilled nowadays. Some of these challenges are; channel saturation due to simultaneous radio access of many vehicles, routing protocols in topologies that vary rapidly, minimum quality of service assurance and security mechanisms to efficiently detect and neutralize malicious attacks. Vehicular services can be classified in four important groups: Safety, Efficiency, Sustainability and Infotainment. The benefits of these services for the transport sector are clear but many technological and business challenges need to be faced before a real mass market deployment. Service delivery platforms are not prepared for fulfilling the needs of this complex environment with restrictive requirements due to the criticism of some services To overcome this situation, we propose a solution called VISIONS “Vehicular communication Improvement: Solution based on IMS Operational Nodes and Services”. VISIONS leverages on IMS subsystem and NGN enablers, and follows the CALM reference Architecture standardized by ISO. It also avoids the use of Road Side Units (RSUs), reducing complexity and high costs in terms of deployment and maintenance. We demonstrate the benefits in the following areas: 1. VANET networks efficiency. VISIONS provide a mechanism for the vehicles to access valuable information from IMS and its capabilities through a cellular channel. This efficiency improvement will occur in two relevant areas: a. Routing mechanisms. These protocols are responsible of carrying information from a vehicle to another (or a group of vehicles) using multihop mechanisms. We do not propose a new algorithm but the use of VANET topology information provided through our solution to enrich the performance of these protocols. b. Security. Many aspects of security (privacy, key, authentication, access control, revocation mechanisms, etc) are not resolved in vehicular communications. Our solution efficiently disseminates revocation information to neutralize malicious nodes in the VANET. 2. Service delivery platform. It is based on extended enablers, reference architectures, standard protocols and open APIs. By following this approach, we reduce costs and resources for service development, deployment and maintenance. To quantify these benefits in VANET networks, we provide an analytical model of the system and simulate our solution in realistic scenarios. The simulations results demonstrate how VISIONS improves the performance of relevant routing protocols and is more efficient neutralizing security attacks than the widely proposed solutions based on RSUs. Finally, we design an innovative Social Network service based in our platform, explaining how VISIONS facilitate the deployment and usage of complex capabilities. RESUMEN Los servicios digitales y comunicaciones en entornos vehiculares proporcionan herramientas esenciales para mejorar el transporte por carretera; reduciendo el número de accidentes, mejorando la eficiencia del tráfico y optimizando el transporte de mercancías y personas. Las comunicaciones vehiculares generalmente están basadas en redes VANET (Vehicular Ad hoc Networks). En dichas redes, los vehículos se comunican entre sí sin necesidad de infraestructura. Las redes VANET están principalmente orientadas a difundir información (por ejemplo advertencias de seguridad) a los vehículos en determinadas zonas geográficas, pero presentan unos requisitos muy exigentes que no se han resuelto con éxito hasta la fecha. Algunos de estos retos son; saturación del canal de acceso de radio debido al acceso simultáneo de múltiples vehículos, la eficiencia de protocolos de encaminamiento en topologías que varían rápidamente, la calidad de servicio (QoS) y los mecanismos de seguridad para detectar y neutralizar los ataques maliciosos de manera eficiente. Los servicios vehiculares pueden clasificarse en cuatro grupos: Seguridad, Eficiencia del tráfico, Sostenibilidad, e Infotainment (información y entretenimiento). Los beneficios de estos servicios para el sector son claros, pero es necesario resolver muchos desafíos tecnológicos y de negocio antes de una implementación real. Las actuales plataformas de despliegue de servicios no están preparadas para satisfacer las necesidades de este complejo entorno con requisitos muy restrictivos debido a la criticidad de algunas aplicaciones. Con el objetivo de mejorar esta situación, proponemos una solución llamada VISIONS “Vehicular communication Improvement: Solution based on IMS Operational Nodes and Services”. VISIONS se basa en el subsistema IMS, las capacidades NGN y es compatible con la arquitectura de referencia CALM estandarizado por ISO para sistemas de transporte. También evita el uso de elementos en las carreteras, conocidos como Road Side Units (RSU), reduciendo la complejidad y los altos costes de despliegue y mantenimiento. A lo largo de la tesis, demostramos los beneficios en las siguientes áreas: 1. Eficiencia en redes VANET. VISIONS proporciona un mecanismo para que los vehículos accedan a información valiosa proporcionada por IMS y sus capacidades a través de un canal de celular. Dicho mecanismo contribuye a la mejora de dos áreas importantes: a. Mecanismos de encaminamiento. Estos protocolos son responsables de llevar información de un vehículo a otro (o a un grupo de vehículos) utilizando múltiples saltos. No proponemos un nuevo algoritmo de encaminamiento, sino el uso de información topológica de la red VANET a través de nuestra solución para enriquecer el funcionamiento de los protocolos más relevantes. b. Seguridad. Muchos aspectos de la seguridad (privacidad, gestión de claves, autenticación, control de acceso, mecanismos de revocación, etc) no están resueltos en las comunicaciones vehiculares. Nuestra solución difunde de manera eficiente la información de revocación para neutralizar los nodos maliciosos en la red. 2. Plataforma de despliegue de servicios. Está basada en capacidades NGN, arquitecturas de referencia, protocolos estándar y APIs abiertos. Siguiendo este enfoque, reducimos costes y optimizamos procesos para el desarrollo, despliegue y mantenimiento de servicios vehiculares. Para cuantificar estos beneficios en las redes VANET, ofrecemos un modelo de analítico del sistema y simulamos nuestra solución en escenarios realistas. Los resultados de las simulaciones muestran cómo VISIONS mejora el rendimiento de los protocolos de encaminamiento relevantes y neutraliza los ataques a la seguridad de forma más eficientes que las soluciones basadas en RSU. Por último, diseñamos un innovador servicio de red social basado en nuestra plataforma, explicando cómo VISIONS facilita el despliegue y el uso de las capacidades NGN.
Resumo:
En las últimas décadas hemos visto un rápido desarrollo de las redes de telecomunicación llegando a todos los rincones de la sociedad, bien a través de cable o bien de forma inalámbrica. Dichas redes, que cada vez son más grandes, dinámicas y complejas, integrando un mayor número de servicios y protocolos, requieren de un componente central que es el enrutamiento. El enrutamiento determina las estrategias a utilizar por los nodos de una red para encontrar las rutas óptimas entre un origen y un destino en el envío de información. Resulta difícil conseguir una estrategia que se adapte a este tipo de entornos altamente dinámicos, complejos y con un alto grado de heterogeneidad. Los algoritmos clásicos propuestos hasta la fecha suelen ser algoritmos centralizados que tratan de gestionar una arquitectura claramente distribuida, que en escenarios estacionarios pueden mantener un buen rendimiento, pero que no funcionan bien en escenarios donde se dan continuos cambios en la topología de red o en los patrones de tráfico. Es necesario proponer nuevos algoritmos que permitan el enrutamiento de forma distribuida, más adaptables a los cambios, robustos y escalables. Aquí vamos a tratar de hacer una revisión de los algoritmos propuestos inspirados en la naturaleza, particularmente en los comportamientos colectivos de sociedades de insectos. Veremos cómo de una forma descentralizada y auto-organizada, mediante agentes simples e interacciones locales, podemos alcanzar un comportamiento global "inteligente" que cumpla dichas cualidades. Por último proponemos Abira, un algoritmo ACO basado en AntNet-FA que trata de mejorar el rendimiento y la convergencia introduciendo mecanismos de exploración, de feedback negativo como la penalización y de comunicación de de las mejores rutas. Tras realizar una simulación y comparar los resultados con el algoritmo original, vemos que Abira muestra un mejor rendimiento.
Resumo:
Este proyecto surge de la búsqueda de un campo de aplicación de las Redes de Sensores Inalámbricos, WSN, aplicadas a la vida cotidiana. Dicha aplicación consistirá en un sistema de gestión de alumbrado público a través del cual se buscará una reducción del consumo energético y del gasto económico, así como una gestión en tiempo de real de la operativa del alumbrado. Para ello se desarrollará un sistema basado en nodos instalados en farolas, los cuales se comunicarán entre sí para funcionar de la forma más optimizada posible, complementándose todo ello con un “nodo base”, que se encargará de servir de nexo entre la red y los diferentes elementos necesarios para la configuración de los nodos y la recogida de información. Esta información servirá para que una página web pueda mostrar al usuario final toda la información necesaria para tener un control sobre el estado actual de funcionamiento de cada una de las farolas, control del consumo, así como detección de averías. En este proyecto se describen las tecnologías actuales relacionadas con el campo de las WSN y los sensores, presentando aplicaciones que en la actualidad se encuentran desplegadas. Se expone también una propuesta real de despliegue presentada al Ayuntamiento de una localidad, Pedro Muñoz, para implementar un proyecto piloto en varias de sus calles. Se describe el entorno, tanto hardware como software, explicando los algoritmos utilizados para las asociaciones entre nodos, diagramas de funcionamiento en las distintas fases de la que está compuesta la operativa de los nodos, la codificación de los programas que se necesitan ejecutar para el correcto funcionamiento del sistema. Por último, debido a que el campo de las WSN está en constante evolución, se presentarán diversas ideas para implementar diversas mejoras que pudieran ser desplegadas en un futuro, ampliando la oferta de aplicaciones a ofrecer al usuario final. ABSTRACT. This project results from the development for an application field of wireless Sensor Networks (WSN), applied to daily life. That application will consist of a system of street lighting management, through which it will seek a reduction in energy consumption and economic cost, and a real-time management of the operative of the street lighting. To do this, a system based on nodes installed in streetlights will be developed. These nodes will communicate with each other to operate in the most optimized way possible, complementing all with a Base-station, which will act as a link between the network and the components required for configuring the nodes and collecting data from them. This information will help a website to show the end user all the information needed to have a control on the current operating status of each of the streetlights, consumption control and troubleshooting. To this end, this project will describe the current technologies related to the field of WSN and sensors, presenting applications that are currently deployed. It will be also exposed a real proposal submitted to a city council to deploy a pilot project in many of its streets. Will be described the environment, both hardware and software, explaining the algorithms used for the associations between nodes, operating diagrams in the different phases of the nodes operation, and the coding of programs that are needed for proper system performance. Finally, because the field of WSN is in constant evolution, will be presented different ideas to implement various improvements which could be deployed in the future, extending the range of applications to provide to end-users.
Resumo:
El objetivo fundamental de la presente tesis doctoral es el diseño de una arquitectura cognitiva, que pueda ser empleada para la navegación autónoma de vehículos aéreos no tripulados conocidos como UAV (Unmanned Aerial Vehicle). Dicha arquitectura cognitiva se apoya en la definición de una librería de comportamientos, que aportarán la inteligencia necesaria al UAV para alcanzar los objetivos establecidos, en base a la información sensorial recopilada del entorno de operación. La navegación autónoma del UAV se apoyará en la utilización de un mapa topológico visual, consistente en la definición de un grafo que engloba mediante nodos los diferentes landmarks ubicados en el entorno, y que le servirán al UAV de guía para alcanzar su objetivo. Los arcos establecidos entre los nodos del mapa topológico, le proporcionarán de la información necesaria para establecer el rumbo más adecuado para alcanzar el siguiente landmark a visitar, siguiendo siempre una secuencia lógica de navegación, basada en la distancia entre un determinado landmark con respecto al objetivo final ó landmark destino. La arquitectura define un mecanismo híbrido de control, el cual puede conmutar entre dos diferentes modos de navegación. El primero es el denominado como Search Mode, el cual se activará cuando el UAV se encuentre en un estado desconocido dentro del entorno, para lo cual hará uso de cálculos basado en la entropía para la búsqueda de posibles landmarks. Se empleará como estrategia novedosa la idea de que la entropía de una imagen tiene una correlación directa con respecto a la probabilidad de que dicha imagen contenga uno ó varios landmarks. De esta forma, la estrategia para la búsqueda de nuevos landmarks en el entorno, se basará en un proceso continuo de maximización de la entropía. Si por el contrario el UAV identifica la existencia de un posible landmark entre los definidos en su mapa topológico, se considerará que está sobre un estado conocido, por lo que se conmutará al segundo modo de navegación denominado como Homing Mode, el cual se encargará de calcular señales de control para la aproximación del UAV al landmark localizado. Éste último modo implementa un control dual basado en dos tipos de controladores (FeedForward/FeedBack) que mediante su combinación, aportarán al UAV señales de control cada vez más óptimas, además de llevar a cabo un entrenamiento continuo y en tiempo real. Para cumplir con los requisitos de ejecución y aprendizaje en tiempo real de la arquitectura, se han tomado como principales referencias dos paradigmas empleados en diferentes estudios dentro del área de la robótica, como son el paradigma de robots de desarrollo (developmental robots) basado en un aprendizaje del robot en tiempo real y de forma adaptativa con su entorno, así como del paradigma de modelos internos (internal models) basado en los resultados obtenidos a partir de estudios neurocientíficos del cerebelo humano; dicho modelo interno sirve de base para la construcción del control dual de la arquitectura. Se presentarán los detalles de diseño e implementación de los diferentes módulos que componen la arquitectura cognitiva híbrida, y posteriormente, los diferentes resultados obtenidos a partir de las pruebas experimentales ejecutadas, empleando como UAV la plataforma robótica aérea de AR.Drone. Como resultado final se ha obtenido una validación completa de la arquitectura cognitiva híbrida objetivo de la tesis, cumplimento con la totalidad de requisitos especificados y garantizando su viabilidad como aplicación operativa en el mundo real. Finalmente, se muestran las distintas conclusiones a las cuales se ha llegado a partir de los resultados experimentales, y se presentan las diferentes líneas de investigación futuras que podrán ser ejecutadas.