942 resultados para NDV state of carrier


Relevância:

100.00% 100.00%

Publicador:

Resumo:

New metallurgical and ethnographic observations of the traditional manufacture of specular high-tin bronze mirrors in Kerala state of southern India are discussed, which is an exceptional example of a surviving craft practice of metal mirror-making in the world. The manufacturing process has been reconstructed from analytical investigations made by Srinivasan following a visit late in 1991 to a mirror making workshop and from her technical studies of equipment acquired by Glover in March 1992 from another group of mirror makers from Pathanamthita at an exhibition held at Crafts Museum, Delhi. Finished and unfinished mirror from two workshops were of a binary, copper-tin alloy of 33% tin which is close to the composition of pure delta phase, so that these mirrors are referred to here as ‘delta’ bronzes. For the first time, metallurgical and field observations were made by Srinivasan in 1991 of the manufacture of high-tin ‘beta’ bonze vessels from Palghat district, Kerala, i‥e of wrought and quenched 23% tin bronze. This has provided the first metallurgical record for a surviving craft of high-tin bronze bowl making which can be directly related to archaeological finds of high-tin bronze vessels from the Indian subcontinent and Southeast Asia. New analytical investigations are presented of high-tin beta bronzes from the Indian subcontinent which are some of the earliest reported worldwide. These coupled with the archaeometallurgical evidence suggests that these high-tin bronze techniques are part of a long, continuing, and probably indigenous tradition of the use of high-tin bronzes in the Indian subcontinent with finds reported even from Indus Valley sites. While the source of tin has been problematic, new evidence on bronze smelting slags and literary evidence suggests there may have been some sources of tin in South India.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Colossal electroresistance and current induced resistivity switching have been measured in the ferromagnetic insulating (FMI) state of single crystal manganite La0.82Ca0.18MnO3. The sample has a Curie transition temperature TC = 165 K and the FMI state is realized for temperatures T<100 K. The electroresistance (ER), arising from a strong nonlinear resistivity, attains a large value ( ≈ 100%) in the FMI state. However, this is accompanied by a collapse of the magnetoresistance (MR) to a small value even in magnetic field (H) of 10 T. This demonstrates that the mechanisms that give rise to ER and MR are effectively decoupled.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 2p 6d feature in the Bi L3 spectra has different energies in the semiconducting (0.0≤x<0.7) and the superconducting (x=0.75) compositions of BaBi1−xPbxO3. The Bi 4f core level spectrum shows distinct features ascribable to Bi III and Bi V in BaBiO3 and in the semiconducting compositions; the width of the 4f peaks is also considerably larger in these compositions compared to that in BaBi0.25Pb0.75O3, which shows a single sharp Bi 4f feature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a detailed investigation of the erects of piezoelectricity, spontaneous polarization and charge density on the electronic states and the quasi-Fermi level energy in wurtzite-type semiconductor heterojunctions. This has required a full solution to the coupled Schrodinger-Poisson-Navier model, as a generalization of earlier work on the Schrodinger-Poisson problem. Finite-element-based simulations have been performed on a A1N/GaN quantum well by using both one-step calculation as well as the self-consistent iterative scheme. Results have been provided for field distributions corresponding to cases with zero-displacement boundary conditions and also stress-free boundary conditions. It has been further demonstrated by using four case study examples that a complete self-consistent coupling of electromechanical fields is essential to accurately capture the electromechanical fields and electronic wavefunctions. We have demonstrated that electronic energies can change up to approximately 0.5 eV when comparing partial and complete coupling of electromechanical fields. Similarly, wavefunctions are significantly altered when following a self-consistent procedure as opposed to the partial-coupling case usually considered in literature. Hence, a complete self-consistent procedure is necessary when addressing problems requiring more accurate results on optoelectronic properties of low-dimensional nanostructures compared to those obtainable with conventional methodologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polypyrrole (PPy) has been synthesized electrochemically on platinum substrate by varying synthesis temperature and dopant concentration. The charge transport in PPy has been investigated as a function of temperature for both in-plane and out-of-plane geometry in a wide temperature range of 5K-300 K. The charge transport showed strong anisotropy and various mechanisms were used to explain the transport. The conductivity ratio, sigma(r) = sigma(300 K)/sigma(5 K) is calculated for each sample to quantify the relative disorder. At all the temperatures, the conductivity values for in-plane transport are found to be more for PPy synthesized at lower temperature, while the behavior is found to be different for out-of-plane transport. The carrier density is found to play a crucial role in case of in-plane transport. An effort has been made to correlate charge transport to morphology by analyzing temperature and frequency dependence of conductivity. Charge transport in lateral direction is found to be dominated by hopping whereas tunneling mechanisms are dominated in vertical direction. Parameters such as density of states at the Fermi level N(E-F)], average hopping distance (R), and average hopping energy (W) have been estimated for each samples in both geometry. (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4775405]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nature of the pre-morphotropic phase boundary (MPB) cubic-like state in the lead-free piezoelectric ceramics (1-x)Na1/2Bi1/2TiO3-(x)BaTiO3 at x similar to 0.06 has been examined in detail by electric field and temperature dependent neutron diffraction, x-ray diffraction, dielectric and ferroelectric characterization. The superlattice reflections in the neutron diffraction patterns cannot be explained with the tetragonal P4bm and the rhombohedral (R3c) phase coexistence model. The cubic like state is rather a result of long ranged modulated complex octahedral tilt. This modulated structure exhibits anomalously large dielectric dispersion. The modulated structure transforms to a MPB state on poling. The field-stabilized MPB state is destroyed and the modulated structure is restored on heating the poled specimen above the Vogel-Fulcher freezing temperature. The results show the predominant role of competing octahedral tilts in determining the nature of structural and polar states in Na1/2Bi1/2TiO3-based ferroelectrics. (C) 2013 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solvent polarity has been known to influence the triplet state structure and reactivity. Here, we present our experimental and theoretical study on the effect of solvent on the lowest triplet excited state structure of 2-chlorothioxanthone (CTX). Time-resolved absorption (TA) spectroscopy has been employed to understand the triplet state electronic structure; whereas solvent-induced structural changes have been studied using time-resolved resonance Raman (TR3) spectroscopy. Both the DFT and TD-DFT calculations have been performed in the solution phase employing self-consistent reaction field implicit solvation model to support the experimental data. It has been observed that CO stretching frequencies of the excited triplet state are sensitive to the solvent polarity and increase with the increase in the solvent polarity. Both TA and TR3 studies reveal that specific solvent effect (H-bonding) is more pronounced in comparison to the nonspecific solvent effect. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Landslide hazards are a major natural disaster that affects most of the hilly regions around the world. In India, significant damages due to earthquake induced landslides have been reported in the Himalayan region and also in the Western Ghat region. Thus there is a requirement of a quantitative macro-level landslide hazard assessment within the Indian subcontinent in order to identify the regions with high hazard. In the present study, the seismic landslide hazard for the entire state of Karnataka, India was assessed using topographic slope map, derived from the Digital Elevation Model (DEM) data. The available ASTER DEM data, resampled to 50 m resolution, was used for deriving the slope map of the entire state. Considering linear source model, deterministic seismic hazard analysis was carried out to estimate peak horizontal acceleration (PHA) at bedrock, for each of the grid points having terrain angle 10A degrees and above. The surface level PHA was estimated using nonlinear site amplification technique, considering B-type NEHRP site class. Based on the surface level PHA and slope angle, the seismic landslide hazard for each grid point was estimated in terms of the static factor of safety required to resist landslide, using Newmark's analysis. The analysis was carried out at the district level and the landslide hazard map for all the districts in the Karnataka state was developed first. These were then merged together to obtain a quantitative seismic landslide hazard map of the entire state of Karnataka. Spatial variations in the landslide hazard for all districts as well as for the entire state Karnataka is presented in this paper. The present study shows that the Western Ghat region of the Karnataka state is found to have high landslide hazard where the static factor of safety required to resist landslide is very high.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tuberculosis continues to kill 1.4 million people annually. During the past 5 years, an alarming increase in the number of patients with multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis has been noted, particularly in eastern Europe, Asia, and southern Africa. Treatment outcomes with available treatment regimens for drug-resistant tuberculosis are poor. Although substantial progress in drug development for tuberculosis has been made, scientific progress towards development of interventions for prevention and improvement of drug treatment outcomes have lagged behind. Innovative interventions are therefore needed to combat the growing pandemic of multidrug-resistant and extensively drug-resistant tuberculosis. Novel adjunct treatments are needed to accomplish improved cure rates for multidrug-resistant and extensively drug-resistant tuberculosis. A novel, safe, widely applicable, and more effective vaccine against tuberculosis is also desperately sought to achieve disease control. The quest to develop a universally protective vaccine for tuberculosis continues. So far, research and development of tuberculosis vaccines has resulted in almost 20 candidates at different stages of the clinical trial pipeline. Host-directed therapies are now being developed to refocus the anti-Mycobacterium tuberculosis-directed immune responses towards the host; a strategy that could be especially beneficial for patients with multidrug-resistant tuberculosis or extensively drug-resistant tuberculosis. As we are running short of canonical tuberculosis drugs, more attention should be given to host-directed preventive and therapeutic intervention measures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a macro-level seismic landslide hazard assessment for the entire state of Sikkim, India, based on the Newmark's methodology. The slope map of Sikkim was derived from ASTER Global Digital Elevation Model (GDEM). Seismic shaking in terms of peak horizontal acceleration (PHA) at bedrock level was estimated from deterministic seismic hazard analysis (DSHA), considering point source model. Peak horizontal acceleration at the surface level for the study area was estimated based on nonlinear site amplification technique, considering B-type NEHRP site class. The PHA at surface was considered to induce driving forces on slopes, thus causing landslides. Knowing the surface level PHA and slope angle, the seismic landslide hazard assessment for each grid point was carried out using Newmark's analysis. The critical static factor of safety required to resist landslide for the PHA (obtained from deterministic analysis) was evaluated and its spatial variation throughout the study area is presented. For any slope in the study area, if the in-situ (available) static factor of safety is greater than the static factor of safety required to resist landslide as predicted in the present study, that slope is considered to be safe.