123 resultados para NB2O5


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Propósito y Método de estudio: Este estudio se ha basado en la determinación de las condiciones de vitrificación del sistema óxido: BaO-TiO2-Nb2O5 con adiciones de Al2O3 y -B2O3. Este método representa una alternativa para la obtención de fases cristalinas de titanato de niobio, que presenten propiedad dieléctrica, ya que estas fases cristalinas contribuyen al desarrollo vitrocerámico dieléctrico dentro de la industria de la electrónica. Para la caracterización del vidrio y la posterior caracterización del vitrocerámico se utilizaron las técnicas de DRX, ATD y espectroscopia de impedancia, cuyos datos obtenidos se utilizaron para obtener un vidrio estable y someterlo a un tratamiento térmico adecuado para la producción y el control de la cristalización del vitrocerámico, así como también para determinar las fases cristalinas presentes. Conclusiones y contribuciones: Se obtuvieron vidrios estables en el rango de composición (en% peso) 50BaO-25Nb2O3-25TiO2 con adiciones del 5, 10, 15 y 20% en peso de B2O3, mediante un tratamiento térmico a 1450°C por 2 horas para producir un material homogéneo, dado que se obtuvieron vidrio estables solo con la adición de B2O3 se optó por omitir el Al2O3. Posteriormente, se realizaron tratamientos térmicos a los vidrios estables, para inducir su cristalización controlada. Las propiedades dieléctricas de los vitrocerámicos producidos fueron medidas por espectroscopia de impedancia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The refractory metal carbides have proven important in the development of engineering materials due to their properties such as high hardness, high melting point, high thermal conductivity and high chemical stability. The niobium carbide presents these characteristics. The compounds of niobium impregnated with copper also have excellent dielectric and magnetic properties, and furthermore, the Cu doping increases the catalytic activity in the oxidation processes of hydrogen. This study aimed to the synthesis of nanostructured materials CuNbC and niobium and copper oxide from precursor tris(oxalate) oxiniobate ammonium hydrate through gas-solid and solid-solid reaction, respectively. Both reactions were carried out at low temperature (1000°C) and short reaction time (2 hours). The niobium carbide was produced with 5 % and 11% of copper, and the niobium oxide with 5% of copper. The materials were characterized by X-Ray Diffraction (XRD), Rietveld refinement, Scanning Electron Microscopy (SEM), X-Ray Fluorescence Spectroscopy (XRF), infrared spectroscopy (IR), thermogravimetric (TG) and differential thermal analysis (DTA , BET and particle size Laser. From the XRD analysis and Rietveld refinement of CuNbC with S = 1.23, we observed the formation of niobium carbide and metallic copper with cubic structure. For the synthesis of mixed oxide made of niobium and copper, the formation of two distinct phases was observed: CuNb2O6 and Nb2O5, although the latter was present in small amounts

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A number of supported and un-supported Oxygen Evolution Reaction (OER) iridium based electrocatalysts for Polymer Electrolyte Membrane Water Electrolysis (PEMWE) were synthesized using a polyol method. The electrocatalysts and the supports were characterized using a wide range of physical and electrochemical characterization methods. The effect of morphological characteristics of the OER electrocatalyst and the support on the OER activity was studied. The results of this thesis contribute to the existing research to reduce the cost of PEMWE by enhancing the utilization of precious metal for OER electrocatalysis. Iridium electrocatalysts supported on antimony tin oxide (Ir/ATO) were synthesized using the polyol method with two different heating techniques: conventional and microwave-irradiation. It was shown that the physical morphology and electrochemical properties of Ir/ATO synthesized with the two heating methods were comparable. However, the microwave irradiation method was extremely faster than the conventional heating method. Additionally, the effect of heat treatment (calcination temperature) on the morphology and OER activity of Ir/ATO synthesized electrocatalyst with the conventional polyol method. It was found that the iridium electrocatalyst synthesized with the polyol method, consisted of 1-5 nm particles, possessed an amorphous structure, and contained iridium with an average oxidation state of less than +4. Calcining the catalyst at temperatures more than 400 ºC and less than 700ºC: 1) increased the size of the iridium particles to 30 nm, 2) changed the structure of iridium particles from amorphous to crystalline, 3) increased the iridium oxidation state to +4 (IrO2), 4) reduced the electrochemically active surface area by approximately 50%, and 5) reduced the OER activity by approximately 25%; however, it had no significant effect on the physical and chemical morphology of the ATO support. Moreover, potential support metal carbides and oxides including: Tantalum Carbide (TaC), Niobium Oxide (Nb2O5), Niobium Carbide (NbC), Titanium Carbide (TiC), Tungsten Carbide (WC) and Antimony-doped Tin Oxide (ATO, Sb2O5-SnO2), were characterized, and used as support for the iridium OER electrocatalysts. TaC was found to be a promising support, and increasing its surface area by 4% improved the OER performance of the final supported catalyst by approximately 50%.