457 resultados para NAD
Resumo:
We examined the contribution of each alpha(1)-adrenoceptor (AR) subtype in noradrenaline (NAd)-evoked contraction in the thoracic aortas and mesenteric arteries of mice. Compared with the concentration-response curves (CRCs) for NAd in the thoracic aortas of wild-type (WT) mice, the CRCs of mutant mice showed a significantly lower sensitivity. The pD(2) value in rank order is as follows: WT mice (8.21) > alpha(1B)-adrenoceptor knockout (alpha(1B)-KO) (7.77) > alpha(1D)-AR knockout (alpha(1D)-KO) (6.44) > alpha(1B)- and alpha(1D)-AR double knockout (alpha(1BD)-KO) (5.15). In the mesenteric artery, CRCs for NAd did not differ significantly between either WT (6.52) and alpha(1B)-KO mice (7.12) or alpha(1D)-KO (6.19) and alpha(1BD)-KO (6.29) mice. However, the CRC maximum responses to NAd in alpha(1D)- and alpha(1BD)-KO mice were significantly lower than those in WT and alpha(1B)-KO mice. Except in the thoracic aortas of alpha(1BD)-KO mice, the competitive antagonist prazosin inhibited the contraction response to NAd with high affinity. However, prazosin produced shallow Schild slopes in the vessels of mice lacking the alpha(1D)-AR gene. In the thoracic aorta, pA(2) values in WT mice for KMD-3213 and BMY7378 were 8.25 and 8.46, respectively, and in alpha(1B)-KO mice they were 8.49 and 9.13, respectively. In the mesenteric artery, pA(2) values in WT mice for KMD-3213 and BMY7378 were 8.34 and 7.47, respectively, and in alpha(1B)-KO mice they were 8.11 and 7.82, respectively. These pharmacological findings were in fairly good agreement with findings from comparison of CRCs, with the exception of the mesenteric arteries of WT and alpha(1B)-KO mice, which showed low affinities to BMY7378. We performed a quantitative analysis of the mRNA expression of each alpha(1)-AR subtype in these vessels in order to examine the correlation between mRNA expression level and the predominance of each alpha(1)-AR subtype in mediating vascular contraction. The rank order of each alpha(1)-AR subtype in terms of its vasoconstrictor role was in fairly good agreement with the level of expression of mRNA of each subtype, that is, alpha(1D)-AR > alpha(1B)-AR > alpha(1A)-AR in the thoracic aorta and alpha(1D)-AR > alpha(1A)-AR > alpha(1B)-AR in the mesenteric artery. No dramatic compensatory change of alpha(1)-AR subtype in mutant mice was observed in pharmacological or quantitative mRNA expression analysis.
Resumo:
La hipoglucèmia neonatal (HN) és un problema de salut freqüent en les primeres hores de vida del recent nascut (RN) especialment de mares que pateixen diabetis mellitus (DM) durant l’embarà s, més coneguda com a diabetis gestacional (DG). La diabetis gestacional és un dels principals factors de risc que condiciona a un nadó a presentar hipoglucèmia en les hores posteriors al naixement, per això, els professionals d’infermeria necessiten conèixer la millor manera d’atendre a la dona embarassada que pateix DG amb l’objectiu d’ensenyar-li unes cures personals especifiques per intentar disminuir la incidència de recent nascuts (RN) que presenten hipoglucèmia.
Resumo:
Brain activity is energetically costly and requires a steady and highly regulated flow of energy equivalents between neural cells. It is believed that a substantial share of cerebral glucose, the major source of energy of the brain, will preferentially be metabolized in astrocytes via aerobic glycolysis. The aim of this study was to evaluate whether uncoupling proteins (UCPs), located in the inner membrane of mitochondria, play a role in setting up the metabolic response pattern of astrocytes. UCPs are believed to mediate the transmembrane transfer of protons, resulting in the uncoupling of oxidative phosphorylation from ATP production. UCPs are therefore potentially important regulators of energy fluxes. The main UCP isoforms expressed in the brain are UCP2, UCP4, and UCP5. We examined in particular the role of UCP4 in neuron-astrocyte metabolic coupling and measured a range of functional metabolic parameters including mitochondrial electrical potential and pH, reactive oxygen species production, NAD/NADH ratio, ATP/ADP ratio, CO2 and lactate production, and oxygen consumption rate. In brief, we found that UCP4 regulates the intramitochondrial pH of astrocytes, which acidifies as a consequence of glutamate uptake, with the main consequence of reducing efficiency of mitochondrial ATP production. The diminished ATP production is effectively compensated by enhancement of glycolysis. This nonoxidative production of energy is not associated with deleterious H2O2 production. We show that astrocytes expressing more UCP4 produced more lactate, which is used as an energy source by neurons, and had the ability to enhance neuronal survival.
Resumo:
(3R)-hydroxyacyl-CoA dehydrogenase is part of multifunctional enzyme type 2 (MFE-2) of peroxisomal fatty acid beta-oxidation. The MFE-2 protein from yeasts contains in the same polypeptide chain two dehydrogenases (A and B), which possess difference in substrate specificity. The crystal structure of Candida tropicalis (3R)-hydroxyacyl-CoA dehydrogenase AB heterodimer, consisting of dehydrogenase A and B, determined at the resolution of 2.2A, shows overall similarity with the prototypic counterpart from rat, but also important differences that explain the substrate specificity differences observed. Docking studies suggest that dehydrogenase A binds the hydrophobic fatty acyl chain of a medium-chain-length ((3R)-OH-C10) substrate as bent into the binding pocket, whereas the short-chain substrates are dislocated by two mechanisms: (i) a short-chain-length 3-hydroxyacyl group ((3R)-OH-C4) does not reach the hydrophobic contacts needed for anchoring the substrate into the active site; and (ii) Leu44 in the loop above the NAD(+) cofactor attracts short-chain-length substrates away from the active site. Dehydrogenase B, which can use a (3R)-OH-C4 substrate, has a more shallow binding pocket and the substrate is correctly placed for catalysis. Based on the current structure, and together with the structure of the 2-enoyl-CoA hydratase 2 unit of yeast MFE-2 it becomes obvious that in yeast and mammalian MFE-2s, despite basically identical functional domains, the assembly of these domains into a mature, dimeric multifunctional enzyme is very different.
Resumo:
Abstract APO866 is an inhibitor of nicotinamide adenine dinucleotide (NAD) biosynthesis that exhibits potent anti-lymphoma activity. Rituximab (RTX), an anti-CD20 antibody, kills lymphoma cells by direct apoptosis and antibody- and complement-dependent cell-mediated cytotoxicities, and has clinical efficacy in non-Hodgkin cell lymphomas. In the present study, we evaluated whether RTX could potentiate APO866-induced human B-lymphoma cell death and shed light on death-mediated mechanisms associated with this drug combination. We found that RTX significantly increases APO866-induced death in lymphoma cells from patients and lines. Mechanisms include enhancement of autophagy-mediated cell death, activation of caspase 3 and exacerbation of mitochondrial depolarization, but not increase of reactive oxygen species (ROS) production, when compared with those induced by each drug alone. In vivo, combined administration of APO866 with RTX in a laboratory model of human aggressive lymphoma significantly decreased tumor burden and prolonged survival over single-agent treatment. Our study demonstrates that the combination of RTX and APO866 optimizes B-cell lymphoma apoptosis and therapeutic efficacy over both compounds administered separately.
Resumo:
Functional neuroimaging has undergone spectacular developments in recent years. Paradoxically, its neurobiological bases have remained elusive, resulting in an intense debate around the cellular mechanisms taking place upon activation that could contribute to the signals measured. Taking advantage of a modeling approach, we propose here a coherent neurobiological framework that not only explains several in vitro and in vivo observations but also provides a physiological basis to interpret imaging signals. First, based on a model of compartmentalized energy metabolism, we show that complex kinetics of NADH changes observed in vitro can be accounted for by distinct metabolic responses in two cell populations reminiscent of neurons and astrocytes. Second, extended application of the model to an in vivo situation allowed us to reproduce the evolution of intraparenchymal oxygen levels upon activation as measured experimentally without substantially altering the initial parameter values. Finally, applying the same model to functional neuroimaging in humans, we were able to determine that the early negative component of the blood oxygenation level-dependent response recorded with functional MRI, known as the initial dip, critically depends on the oxidative response of neurons, whereas the late aspects of the signal correspond to a combination of responses from cell types with two distinct metabolic profiles that could be neurons and astrocytes. In summary, our results, obtained with such a modeling approach, support the concept that both neuronal and glial metabolic responses form essential components of neuroimaging signals.
Resumo:
Doxorubicin (DOX) is a potent available antitumor agent; however, its clinical use is limited because of its cardiotoxicity. Cell death is a key component in DOX-induced cardiotoxicity, but its mechanisms are elusive. Here, we explore the role of superoxide, nitric oxide (NO), and peroxynitrite in DOX-induced cell death using both in vivo and in vitro models of cardiotoxicity. Western blot analysis, real-time PCR, immunohistochemistry, flow cytometry, fluorescent microscopy, and biochemical assays were used to determine the markers of apoptosis/necrosis and sources of NO and superoxide and their production. Left ventricular function was measured by a pressure-volume system. We demonstrated increases in myocardial apoptosis (caspase-3 cleavage/activity, cytochrome c release, and TUNEL), inducible NO synthase (iNOS) expression, mitochondrial superoxide generation, 3-nitrotyrosine (NT) formation, matrix metalloproteinase (MMP)-2/MMP-9 gene expression, poly(ADP-ribose) polymerase activation [without major changes in NAD(P)H oxidase isoform 1, NAD(P)H oxidase isoform 2, p22(phox), p40(phox), p47(phox), p67(phox), xanthine oxidase, endothelial NOS, and neuronal NOS expression] and decreases in myocardial contractility, catalase, and glutathione peroxidase activities 5 days after DOX treatment to mice. All these effects of DOX were markedly attenuated by peroxynitrite scavengers. Doxorubicin dose dependently increased mitochondrial superoxide and NT generation and apoptosis/necrosis in cardiac-derived H9c2 cells. DOX- or peroxynitrite-induced apoptosis/necrosis positively correlated with intracellular NT formation and could be abolished by peroxynitrite scavengers. DOX-induced cell death and NT formation were also attenuated by selective iNOS inhibitors or in iNOS knockout mice. Various NO donors when coadministered with DOX but not alone dramatically enhanced DOX-induced cell death with concomitant increased NT formation. DOX-induced cell death was also attenuated by cell-permeable SOD but not by cell-permeable catalase, the xanthine oxidase inhibitor allopurinol, or the NADPH oxidase inhibitors apocynine or diphenylene iodonium. Thus, peroxynitrite is a major trigger of DOX-induced cell death both in vivo and in vivo, and the modulation of the pathways leading to its generation or its effective neutralization can be of significant therapeutic benefit.
Resumo:
NAD(+) biosynthesis through nicotinamide phosphoribosyltransferase (NAMPT) holds potential as a target for the treatment of inflammatory disorders due to NAD(+)'s role in immune cell signaling and metabolism. In addition to its activity as an enzyme, NAMPT is also secreted in the extracellular space where it acts as a pro-inflammatory and proangiogenic cytokine. NAMPT inhibition with FK866 has anti-inflammatory activity in different models of immune disorders and it prevents ischemia-reperfusion-induced heart damage by dampening the production of neutrophil chemoattractants. NAMPT blockade with a neutralizing antibody has beneficial effects in an acute lung injury model. Last, but not least, the anticancer activity of NAMPT inhibitors may also reflect, at least in part, their ability to modify the cancer microenvironment through their anti-inflammatory properties. Overall, NAMPT inhibition holds potential for the treatment of inflammation-related disorders and the development of effective and safe NAMPT inhibitors remains an area of strong interest in pharmaceutical research.
Resumo:
A critical issue in brain energy metabolism is whether lactate produced within the brain by astrocytes is taken up and metabolized by neurons upon activation. Although there is ample evidence that neurons can efficiently use lactate as an energy substrate, at least in vitro, few experimental data exist to indicate that it is indeed the case in vivo. To address this question, we used a modeling approach to determine which mechanisms are necessary to explain typical brain lactate kinetics observed upon activation. On the basis of a previously validated model that takes into account the compartmentalization of energy metabolism, we developed a mathematical model of brain lactate kinetics, which was applied to published data describing the changes in extracellular lactate levels upon activation. Results show that the initial dip in the extracellular lactate concentration observed at the onset of stimulation can only be satisfactorily explained by a rapid uptake within an intraparenchymal cellular compartment. In contrast, neither blood flow increase, nor extracellular pH variation can be major causes of the lactate initial dip, whereas tissue lactate diffusion only tends to reduce its amplitude. The kinetic properties of monocarboxylate transporter isoforms strongly suggest that neurons represent the most likely compartment for activation-induced lactate uptake and that neuronal lactate utilization occurring early after activation onset is responsible for the initial dip in brain lactate levels observed in both animals and humans.
Resumo:
Un estudi demostra que els fets traumà tics que el pare hagi pogut viure un temps abans de la concepció d"un fill afecten el creixement del futur nadó. La causa se situaria en els canvis epigenètics provocats pel trauma en qüestió, que afectarien els espermatozous
Resumo:
L’embarà s és una situació especial en la vida de la dona que condiciona canvis en la seva fisiologia i en el desenvolupament d’un nou ésser. Entre aquests canvis fisiològics trobem l’augment dels nivells de colesterol i triglicèrids degut, majorità riament, a l’augment de les hormones sexuals esteroidees i al metabolisme hepà tic i adipós alterat. Ara bé, cal mantenir aquests nivells dins d’uns lÃmits per tal que no esdevinguin factor de risc de malalties futures, tant en la dona gestant com en el futur nadó.
Resumo:
Un estudi demostra que els fets traumà tics que el pare hagi pogut viure un temps abans de la concepció d"un fill afecten el creixement del futur nadó. La causa se situaria en els canvis epigenètics provocats pel trauma en qüestió, que afectarien els espermatozous
Resumo:
L’ingrés d’un nadó a una UCIN (Unitat de Cures Intensives Neonatals) és una situació que requereix unes caracterÃstiques assistencials especÃfiques que facilitin el fet d’atendre tant les necessitats fÃsiques com les necessitats afectives del nen, i proporcionin una assistència als pares per tal de preservar el vincle entre aquests i el seu fill. Aquestes situacions tenen una cà rrega emocional molt important. La transcendència de les situacions posa l’equip assistencial en una posició molt delicada, en la qual les qualitats rigor mèdic, calidesa, contenció, sensibilitat i humanitat han de ser primordials. Per a poder dur a terme aquestes tasques, és de cabdal importà ncia el treball d’un equip multidisciplinari.
Resumo:
SIRT1 is a NAD(+)-dependent deacetylase that governs a number of genetic programs to cope with changes in the nutritional status of cells and organisms. Behavioral responses to food abundance are important for the survival of higher animals. Here we used mice with increased or decreased brain SIRT1 to show that this sirtuin regulates anxiety and exploratory drive by activating transcription of the gene encoding the monoamine oxidase A (MAO-A) to reduce serotonin levels in the brain. Indeed, treating animals with MAO-A inhibitors or selective serotonin reuptake inhibitors (SSRIs) normalized anxiety differences between wild-type and mutant animals. SIRT1 deacetylates the brain-specific helix-loop-helix transcription factor NHLH2 on lysine 49 to increase its activation of the MAO-A promoter. Both common and rare variations in the SIRT1 gene were shown to be associated with risk of anxiety in human population samples. Together these data indicate that SIRT1 mediates levels of anxiety, and this regulation may be adaptive in a changing environment of food availability.
Resumo:
Quan parlem de la prematuritat, tot ens porta a pensar en els avenços de la tècnica, en els nens tan i tan petits que salvem, però poques vegades ens aturem a pensar en el dol que representa la pèrdua del embaràs o, en el cas del nadó, la pèrdua del cos de la mare, única referència capaç de calmar les ansietats del néixer.