918 resultados para Multiple Objective Optimization
Resumo:
Los regímenes fiscales que se aplican a los contratos de exploración y desarrollo de petróleo y gas, entre los propietarios del recurso natural (generalmente el país soberano representado por su gobierno) y las compañías operadoras internacionales (COI) que aportan capital, experiencia y tecnología, no han sabido responder a la reciente escalada de los precios del crudo y han dado lugar a que los países productores no estén recibiendo la parte de renta correspondiente al incremento de precios. Esto ha provocado una ola de renegociaciones llegándose incluso a la imposición unilateral de nuevos términos por parte de algunos gobiernos entre los que destacan el caso de Venezuela y Argentina, por ser los más radicales. El objetivo del presente trabajo es el estudio y diseño de un régimen fiscal que, en las actuales condiciones del mercado, consiga que los gobiernos optimicen sus ingresos incentivando la inversión. Para ello se simulan los efectos de siete tipos diferentes de fiscalidades aplicadas a dos yacimientos de características muy distintas y se valoran los resultados. El modelo utilizado para la simulación es el modelo de escenarios, ampliamente utilizado tanto por la comunidad académica como por la industria para comparar el comportamiento de diferentes regímenes fiscales. Para decidir cuál de las fiscalidades estudiadas es la mejor se emplea un método optimización multicriterio. Los criterios que se han aplicado para valorar los resultados recogen la opinión de expertos de la industria sobre qué factores se consideran deseables en un contrato a la hora invertir. El resultado permite delinear las características de un marco fiscal ideal del tipo acuerdo de producción compartida, sin royalties, con un límite alto de recuperación de crudo coste que permita recobrar todos los costes operativos y una parte de los de capital en cualquier escenario de precios, un reparto de los beneficios en función de un indicador de rentabilidad como es la TIR, con un mecanismo de recuperación de costes adicional (uplift) que incentive la inversión y con disposiciones que premien la exploración y más la de alto riesgo como la amortización acelerada de los gastos de capital o una ampliación de la cláusula de ringfence. Un contrato con estas características permitirá al gobierno optimizar los ingresos obtenidos de sus reservas de petróleo y gas maximizando la producción al atraer inversión para la exploración y mejorar la recuperación alargando la vida del yacimiento. Además al reducir el riesgo percibido por el inversor que recupera sus costes, menor será la rentabilidad exigida al capital invertido y por tanto mayor la parte de esos ingresos que irá a parar al gobierno del país productor. ABSTRACT Fiscal systems used in petroleum arrangements between the owners of the resource (usually a sovereign country represented by its government) and the international operating company (IOC) that provides capital, knowhow and technology, have failed to allocate profits from the recent escalation of oil prices and have resulted in producing countries not receiving the right share of that increase. This has caused a wave of renegotiations and even in some cases, like Venezuela and Argentina, government unilaterally imposed new terms. This paper aims to outline desirable features of a petroleum fiscal system, under current market conditions, for governments to maximize their revenues while encouraging investment. Firstly the impact of seven different types of fiscal regimes is studied with a simulation for two separate oil fields using the scenario approach. The scenario approach has been frequently employed by academic and business researchers to compare the performance of diverse fiscal regimes. In order to decide which of the fiscal regimes’ performance is best we used a multi-objective optimization decision making approach to assess the results. The criteria applied gather the preferences of a panel of industry experts about the desirable features of a contract when making investment decisions. The results show the characteristics of an ideal fiscal framework that closely resembles a production sharing contract, with no royalty payment and a high cost recovery limit that allows the IOC to recover all operating expenses and a share of its capital costs under any price scenario, a profit oil sharing mechanism based on a profitability indicator such as the ROR, with an uplift that allows to recover an additional percentage of capital costs and provisions that promote exploration investment, specially high-risk exploration, such as accelerated depreciation for capital costs and a wide definition of the ringfence clause. A contract with these features will allow governments to optimize overall revenues from its petroleum resources maximizing production by promoting investment on exploration and extending oil fields life. Also by reducing the investor’s perception of risk it will reduce the minimum return to capital required by the IOC and therefore it will increase the government share of those revenues.
Resumo:
Este trabalho é referente ao desenvolvimento de um calibrador multiobjetivo automático do modelo SWMM (Storm Water Management Model), e avaliação de algumas fontes de incertezas presentes no processo de calibração, visando à representação satisfatória da transformação chuva-vazão. O código foi escrito em linguagem C, e aplica os conceitos do método de otimização multiobjetivo NSGAII (Non Dominated Sorting Genetic Algorithm) com elitismo controlado, além de utilizar o código fonte do modelo SWMM para a determinação das vazões simuladas. Paralelamente, também foi criada uma interface visual, para melhorar a facilidade de utilização do calibrador. Os testes do calibrador foram aplicados a três sistemas diferentes: um sistema hipotético disponibilizado no pacote de instalação do SWMM; um sistema real de pequenas dimensões, denominado La Terraza, localizado no município de Sierra Vista, Arizona (EUA); e um sistema de maiores dimensões, a bacia hidrográfica do Córrego do Gregório, localizada no município de São Carlos (SP). Os resultados indicam que o calibrador construído apresenta, em geral, eficiência satisfatória, porém é bastante dependente da qualidade dos dados observados em campo e dos parâmetros de entrada escolhidos pelo usuário. Foi demonstrada a importância da escolha dos eventos utilizados na calibração, do estabelecimento de limites adequados nos valores das variáveis de decisão, da escolha das funções objetivo e, principalmente, da qualidade e representatividade dos dados de monitoramento pluvio e fluviométrico. Conclui-se que estes testes desenvolvidos contribuem para o entendimento mais aprofundado dos processos envolvidos na modelagem e calibração, possibilitando avanços na confiabilidade dos resultados da modelagem.
Resumo:
O problema de Planejamento da Expansão de Sistemas de Distribuição (PESD) visa determinar diretrizes para a expansão da rede considerando a crescente demanda dos consumidores. Nesse contexto, as empresas distribuidoras de energia elétrica têm o papel de propor ações no sistema de distribuição com o intuito de adequar o fornecimento da energia aos padrões exigidos pelos órgãos reguladores. Tradicionalmente considera-se apenas a minimização do custo global de investimento de planos de expansão, negligenciando-se questões de confiabilidade e robustez do sistema. Como consequência, os planos de expansão obtidos levam o sistema de distribuição a configurações que são vulneráveis a elevados cortes de carga na ocorrência de contingências na rede. Este trabalho busca a elaboração de uma metodologia para inserir questões de confiabilidade e risco ao problema PESD tradicional, com o intuito de escolher planos de expansão que maximizem a robustez da rede e, consequentemente, atenuar os danos causados pelas contingências no sistema. Formulou-se um modelo multiobjetivo do problema PESD em que se minimizam dois objetivos: o custo global (que incorpora custo de investimento, custo de manutenção, custo de operação e custo de produção de energia) e o risco de implantação de planos de expansão. Para ambos os objetivos, são formulados modelos lineares inteiros mistos que são resolvidos utilizando o solver CPLEX através do software GAMS. Para administrar a busca por soluções ótimas, optou-se por programar em linguagem C++ dois Algoritmos Evolutivos: Non-dominated Sorting Genetic Algorithm-2 (NSGA2) e Strength Pareto Evolutionary Algorithm-2 (SPEA2). Esses algoritmos mostraram-se eficazes nessa busca, o que foi constatado através de simulações do planejamento da expansão de dois sistemas testes adaptados da literatura. O conjunto de soluções encontradas nas simulações contém planos de expansão com diferentes níveis de custo global e de risco de implantação, destacando a diversidade das soluções propostas. Algumas dessas topologias são ilustradas para se evidenciar suas diferenças.
Resumo:
O objeto deste trabalho é a análise do aproveitamento múltiplo do reservatório de Barra Bonita, localizado na confluência entre os rios Piracicaba e Tietê, no estado de São Paulo e pertencente ao chamado sistema Tietê-Paraná. Será realizada a otimização da operação do reservatório, através de programação linear, com o objetivo de aumentar a geração de energia elétrica, através da maximização da vazão turbinada. Em seguida, a partir dos resultados da otimização da geração de energia, serão utilizadas técnicas de simulação computacional, para se obter índices de desempenho conhecidos como confiabilidade, resiliência e vulnerabilidade, além de outros fornecidos pelo próprio modelo de simulação a ser utilizado. Estes índices auxiliam a avaliação da freqüência, magnitude e duração dos possíveis conflitos existentes. Serão analisados os possíveis conflitos entre a navegação, o armazenamento no reservatório, a geração de energia e a ocorrência de enchentes na cidade de Barra Bonita, localizada a jusante da barragem.
Resumo:
Este trabalho apresenta um modelo de otimização multiobjetivo aplicado ao projeto de concepção de submarinos convencionais (i.e. de propulsão dieselelétrica). Um modelo de síntese que permite a estimativa de pesos, volume, velocidade, carga elétrica e outras características de interesse para a o projeto de concepção é formulado. O modelo de síntese é integrado a um modelo de otimização multiobjetivo baseado em algoritmos genéticos (especificamente, o algoritmo NSGA II). A otimização multiobjetivo consiste na maximização da efetividade militar do submarino e na minimização de seu custo. A efetividade militar do submarino é representada por uma Medida Geral de Efetividade (OMOE) estabelecida por meio do Processo Analítico Hierárquico (AHP). O Custo Básico de Construção (BCC) do submarino é estimado a partir dos seus grupos de peso. Ao fim do processo de otimização, é estabelecida uma Fronteira de Pareto composta por soluções não dominadas. Uma dessas soluções é selecionada para refinamento preliminar e os resultados são discutidos. Subsidiariamente, esta dissertação apresenta discussão sucinta sobre aspectos históricos e operativos relacionados a submarinos, bem como sobre sua metodologia de projeto. Alguns conceitos de Arquitetura Naval, aplicada ao projeto dessas embarcações, são também abordados.
Resumo:
RESUMO Simulações de aeroacústica computacional demandam uma quantidade considerável de tempo, o que torna complicada a realização de estudos paramétricos. O presente trabalho propõe uma metodologia viável para otimização aeroacústica. Através da análise numérica utilizando dinâmica dos fluidos computacional, foi estudada a aplicação de uma placa separadora desacoplada como método de controle passivo da esteira turbulenta de um cilindro e avaliou-se a irradiação de ruído causado pela interação do escoamento com ambos os corpos, empregando ferramentas de aeroacústica computacional baseadas no método de Ffowcs-Williams e Hawkings. Algumas abordagens distintas de metodologias de otimização de projeto foram aplicadas neste problema, com o objetivo de chegar a uma configuração otimizada que permita a redução do nível sonoro ao longe. Assim, utilizando uma ferramenta de otimização multidisciplinar, pode-se avaliar a capacidade de modelos heurísticos e a grande vantagem do emprego de algoritmos baseados em método de superfície de resposta quando aplicados em um problema não linear, pois requerem a avaliação de um menor número de alternativas para se obter um ponto ótimo. Além disso, foi possível identificar e agrupar os resultados em 5 clusters baseados em seus parâmetros geométricos, nível de pressão sonora global e o valor quadrático médio do coeficiente de arrasto, confirmando a eficiência da aplicação de placas separadoras longas desacopladas posicionadas próximas ao cilindro na estabilização da esteira turbulenta, enquanto que o posicionamento de placas acima de um espaçamento crítico aumentou o nível de pressão acústica irradiado devido à formação de vórtices no espaço entre o cilindro e a placa separadora.
Resumo:
Poster presented in the 24th European Symposium on Computer Aided Process Engineering (ESCAPE 24), Budapest, Hungary, June 15-18, 2014.
Resumo:
In this work, we analyze the effect of incorporating life cycle inventory (LCI) uncertainty on the multi-objective optimization of chemical supply chains (SC) considering simultaneously their economic and environmental performance. To this end, we present a stochastic multi-scenario mixed-integer linear programming (MILP) coupled with a two-step transformation scenario generation algorithm with the unique feature of providing scenarios where the LCI random variables are correlated and each one of them has the desired lognormal marginal distribution. The environmental performance is quantified following life cycle assessment (LCA) principles, which are represented in the model formulation through standard algebraic equations. The capabilities of our approach are illustrated through a case study of a petrochemical supply chain. We show that the stochastic solution improves the economic performance of the SC in comparison with the deterministic one at any level of the environmental impact, and moreover the correlation among environmental burdens provides more realistic scenarios for the decision making process.
Resumo:
Силвия К. Баева, Цветана Хр. Недева - Важен аспект в системата на Министерството на регионалното развитие и благоустройство е работата по Оперативна програма “Регионално развитие” с приоритетна ос “Устойчиво и интегрирано градско развитие” по операция “Подобряване на физическата среда и превенция на риска”. По тази програма са включени 86 общини. Финансовият ресурс на тази операция е на стойност 238 589 939 евро, от които 202 801 448 евро са европейско финансиране [1]. Всяка от тези 86 общини трябва да реши задачата за възлагане на обществена поръчка на определена фирма по тази операция. Всъщност, тази задача е задача за провеждане на общински търг за избор на фирма-изпълнител. Оптималният избор на фирма-изпълнител е много важен. Задачата за провеждане на търг ще формулираме като задача на многокритериалното вземане на решения, като чрез подходящо изграждане на критерии и методи може да се трансформира до задача на еднокритериалната оптимизация.
Resumo:
The increasing number of victims from disasters in recent years results in several challenges for authorities aiming to protect and provide support to affected people. Humanitarian logistics represents one of the most important fields during preparedness and response in cases of disaster, seeking to provide relief, information and services to disaster victims. However, on top of the challenges of logistical activities, the successful completion of operations depends to a large extent on coordination. This is particularly important for developing countries, where disasters occur very often and resources are even scarcer. This paper assumes a multi-agency approach to disaster preparedness that combines geographical information systems (GIS) and multi-objective optimization. The purpose of the tool is to determine the location of emergency facilities, stock prepositioning and distribution allocation for floods. We illustrate the application and the results using a case study centred on Acapulco, México.
Resumo:
The Quadratic Minimum Spanning Tree (QMST) problem is a generalization of the Minimum Spanning Tree problem in which, beyond linear costs associated to each edge, quadratic costs associated to each pair of edges must be considered. The quadratic costs are due to interaction costs between the edges. When interactions occur between adjacent edges only, the problem is named Adjacent Only Quadratic Minimum Spanning Tree (AQMST). Both QMST and AQMST are NP-hard and model a number of real world applications involving infrastructure networks design. Linear and quadratic costs are summed in the mono-objective versions of the problems. However, real world applications often deal with conflicting objectives. In those cases, considering linear and quadratic costs separately is more appropriate and multi-objective optimization provides a more realistic modelling. Exact and heuristic algorithms are investigated in this work for the Bi-objective Adjacent Only Quadratic Spanning Tree Problem. The following techniques are proposed: backtracking, branch-and-bound, Pareto Local Search, Greedy Randomized Adaptive Search Procedure, Simulated Annealing, NSGA-II, Transgenetic Algorithm, Particle Swarm Optimization and a hybridization of the Transgenetic Algorithm with the MOEA-D technique. Pareto compliant quality indicators are used to compare the algorithms on a set of benchmark instances proposed in literature.
Resumo:
The Quadratic Minimum Spanning Tree (QMST) problem is a generalization of the Minimum Spanning Tree problem in which, beyond linear costs associated to each edge, quadratic costs associated to each pair of edges must be considered. The quadratic costs are due to interaction costs between the edges. When interactions occur between adjacent edges only, the problem is named Adjacent Only Quadratic Minimum Spanning Tree (AQMST). Both QMST and AQMST are NP-hard and model a number of real world applications involving infrastructure networks design. Linear and quadratic costs are summed in the mono-objective versions of the problems. However, real world applications often deal with conflicting objectives. In those cases, considering linear and quadratic costs separately is more appropriate and multi-objective optimization provides a more realistic modelling. Exact and heuristic algorithms are investigated in this work for the Bi-objective Adjacent Only Quadratic Spanning Tree Problem. The following techniques are proposed: backtracking, branch-and-bound, Pareto Local Search, Greedy Randomized Adaptive Search Procedure, Simulated Annealing, NSGA-II, Transgenetic Algorithm, Particle Swarm Optimization and a hybridization of the Transgenetic Algorithm with the MOEA-D technique. Pareto compliant quality indicators are used to compare the algorithms on a set of benchmark instances proposed in literature.
Resumo:
This book constitutes the refereed proceedings of the 14th International Conference on Parallel Problem Solving from Nature, PPSN 2016, held in Edinburgh, UK, in September 2016. The total of 93 revised full papers were carefully reviewed and selected from 224 submissions. The meeting began with four workshops which offered an ideal opportunity to explore specific topics in intelligent transportation Workshop, landscape-aware heuristic search, natural computing in scheduling and timetabling, and advances in multi-modal optimization. PPSN XIV also included sixteen free tutorials to give us all the opportunity to learn about new aspects: gray box optimization in theory; theory of evolutionary computation; graph-based and cartesian genetic programming; theory of parallel evolutionary algorithms; promoting diversity in evolutionary optimization: why and how; evolutionary multi-objective optimization; intelligent systems for smart cities; advances on multi-modal optimization; evolutionary computation in cryptography; evolutionary robotics - a practical guide to experiment with real hardware; evolutionary algorithms and hyper-heuristics; a bridge between optimization over manifolds and evolutionary computation; implementing evolutionary algorithms in the cloud; the attainment function approach to performance evaluation in EMO; runtime analysis of evolutionary algorithms: basic introduction; meta-model assisted (evolutionary) optimization. The papers are organized in topical sections on adaption, self-adaption and parameter tuning; differential evolution and swarm intelligence; dynamic, uncertain and constrained environments; genetic programming; multi-objective, many-objective and multi-level optimization; parallel algorithms and hardware issues; real-word applications and modeling; theory; diversity and landscape analysis.
Resumo:
This paper presents a numerical study of a linear compressor cascade to investigate the effective end wall profiling rules for highly-loaded axial compressors. The first step in the research applies a correlation analysis for the different flow field parameters by a data mining over 600 profiling samples to quantify how variations of loss, secondary flow and passage vortex interact with each other under the influence of a profiled end wall. The result identifies the dominant role of corner separation for control of total pressure loss, providing a principle that only in the flow field with serious corner separation does the does the profiled end wall change total pressure loss, secondary flow and passage vortex in the same direction. Then in the second step, a multi-objective optimization of a profiled end wall is performed to reduce loss at design point and near stall point. The development of effective end wall profiling rules is based on the manner of secondary flow control rather than the geometry features of the end wall. Using the optimum end wall cases from the Pareto front, a quantitative tool for analyzing secondary flow control is employed. The driving force induced by a profiled end wall on different regions of end wall flow are subjected to a detailed analysis and identified for their positive/negative influences in relieving corner separation, from which the effective profiling rules are further confirmed. It is found that the profiling rules on a cascade show distinct differences at design point and near stall point, thus loss control of different operating points is generally independent.
Resumo:
Thesis (Master's)--University of Washington, 2016-08