822 resultados para Multilayer Reflector


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extraction and reconstruction of rectal wall structures from an ultrasound image is helpful for surgeons in rectal clinical diagnosis and 3-D reconstruction of rectal structures from ultrasound images. The primary task is to extract the boundary of the muscular layers on the rectal wall. However, due to the low SNR from ultrasound imaging and the thin muscular layer structure of the rectum, this boundary detection task remains a challenge. An active contour model is an effective high-level model, which has been used successfully to aid the tasks of object representation and recognition in many image-processing applications. We present a novel multigradient field active contour algorithm with an extended ability for multiple-object detection, which overcomes some limitations of ordinary active contour models—"snakes." The core part in the algorithm is the proposal of multigradient vector fields, which are used to replace image forces in kinetic function for alternative constraints on the deformation of active contour, thereby partially solving the initialization limitation of active contour for rectal wall boundary detection. An adaptive expanding force is also added to the model to help the active contour go through the homogenous region in the image. The efficacy of the model is explained and tested on the boundary detection of a ring-shaped image, a synthetic image, and an ultrasound image. The experimental results show that the proposed multigradient field-active contour is feasible for multilayer boundary detection of rectal wall

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Body parts that can reflect highly polarized light have been found in several species of stomatopod crustaceans (mantis shrimps). These polarized light reflectors can be grossly divided into two major types. The first type, usually red or pink in color to the human visual system, is located within an animal’s cuticle. Reflectors of the second type, showing iridescent blue, are located beneath the exoskeleton and thus are unaffected by the molt cycle. We used reflection spectropolarimetry and transmission electron microscopy (TEM) to study the reflective properties and the structures that reflect highly polarized light in stomatopods. For the first type of reflector, the degree of polarization usually changes dramatically, from less than 20% to over 70%, with a change in viewing angle. TEM examination indicates that the polarization reflection is generated by multilayer thin-film interference. The second type of reflector, the blue colored ones, reflects highly polarized light to all viewing angles. However, these reflectors show a slight chromatic change with different viewing angles. TEM sections have revealed that streams of oval-shaped vesicles might be responsible for the production of the polarized light reflection. In all the reflectors we have examined so far, the reflected light is always maximally polarized at around 500 nm, which is close to the wavelength best transmitted by sea water. This suggests that the polarized light reflectors found in stomatopods are well adapted to the underwater environment. We also found that most reflectors produce polarized light with a horizontal e-vector. How these polarized light reflectors are used in stomatopod signaling remains unknown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the problem of on-line gradient descent learning for general two-layer neural networks. An analytic solution is presented and used to investigate the role of the learning rate in controlling the evolution and convergence of the learning process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an analytic solution to the problem of on-line gradient-descent learning for two-layer neural networks with an arbitrary number of hidden units in both teacher and student networks. The technique, demonstrated here for the case of adaptive input-to-hidden weights, becomes exact as the dimensionality of the input space increases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An adaptive back-propagation algorithm is studied and compared with gradient descent (standard back-propagation) for on-line learning in two-layer neural networks with an arbitrary number of hidden units. Within a statistical mechanics framework, both numerical studies and a rigorous analysis show that the adaptive back-propagation method results in faster training by breaking the symmetry between hidden units more efficiently and by providing faster convergence to optimal generalization than gradient descent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the effect of two types of noise, data noise and model noise, in an on-line gradient-descent learning scenario for general two-layer student network with an arbitrary number of hidden units. Training examples are randomly drawn input vectors labeled by a two-layer teacher network with an arbitrary number of hidden units. Data is then corrupted by Gaussian noise affecting either the output or the model itself. We examine the effect of both types of noise on the evolution of order parameters and the generalization error in various phases of the learning process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We complement recent advances in thermodynamic limit analyses of mean on-line gradient descent learning dynamics in multi-layer networks by calculating fluctuations possessed by finite dimensional systems. Fluctuations from the mean dynamics are largest at the onset of specialisation as student hidden unit weight vectors begin to imitate specific teacher vectors, increasing with the degree of symmetry of the initial conditions. In light of this, we include a term to stimulate asymmetry in the learning process, which typically also leads to a significant decrease in training time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the effect of regularization in an on-line gradient-descent learning scenario for a general two-layer student network with an arbitrary number of hidden units. Training examples are randomly drawn input vectors labelled by a two-layer teacher network with an arbitrary number of hidden units which may be corrupted by Gaussian output noise. We examine the effect of weight decay regularization on the dynamical evolution of the order parameters and generalization error in various phases of the learning process, in both noiseless and noisy scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a framework for calculating globally optimal parameters, within a given time frame, for on-line learning in multilayer neural networks. We demonstrate the capability of this method by computing optimal learning rates in typical learning scenarios. A similar treatment allows one to determine the relevance of related training algorithms based on modifications to the basic gradient descent rule as well as to compare different training methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method for calculating the globally optimal learning rate in on-line gradient-descent training of multilayer neural networks is presented. The method is based on a variational approach which maximizes the decrease in generalization error over a given time frame. We demonstrate the method by computing optimal learning rates in typical learning scenarios. The method can also be employed when different learning rates are allowed for different parameter vectors as well as to determine the relevance of related training algorithms based on modifications to the basic gradient descent rule.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Primarily targeted toward the network or MIS manager who wants to stay abreast of the latest networking technology, Enterprise Networking: Multilayer Switching and Applications offers up to date information relevant for the design of modern corporate networks and for the evaluation of new networking equipment. The book describes the architectures and standards of switching across the various protocol layers and will also address issues such as multicast quality of service, high-availability and network policies that are requirements of modern switched networks.