892 resultados para Multi-objective algorithm
Resumo:
Multi-objective combinatorial optimization problems have peculiar characteristics that require optimization methods to adapt for this context. Since many of these problems are NP-Hard, the use of metaheuristics has grown over the last years. Particularly, many different approaches using Ant Colony Optimization (ACO) have been proposed. In this work, an ACO is proposed for the Multi-objective Shortest Path Problem, and is compared to two other optimizers found in the literature. A set of 18 instances from two distinct types of graphs are used, as well as a specific multiobjective performance assessment methodology. Initial experiments showed that the proposed algorithm is able to generate better approximation sets than the other optimizers for all instances. In the second part of this work, an experimental analysis is conducted, using several different multiobjective ACO proposals recently published and the same instances used in the first part. Results show each type of instance benefits a particular type of instance benefits a particular algorithmic approach. A new metaphor for the development of multiobjective ACOs is, then, proposed. Usually, ants share the same characteristics and only few works address multi-species approaches. This works proposes an approach where multi-species ants compete for food resources. Each specie has its own search strategy and different species do not access pheromone information of each other. As in nature, the successful ant populations are allowed to grow, whereas unsuccessful ones shrink. The approach introduced here shows to be able to inherit the behavior of strategies that are successful for different types of problems. Results of computational experiments are reported and show that the proposed approach is able to produce significantly better approximation sets than other methods
Resumo:
This paper presents a comparison of reactive power support in distribution networks provided by switched Capacitor Banks (CBs) and Distributed Generators (DGs). Regarding switched CBs, a Tabu Search metaheuristic algorithm is developed to determine their optimal operation with the objective of reducing the power losses in the lines on the system, while meeting network constraints. on the other hand, the optimal operation of DGs is analyzed through an evolutionary Multi-Objective (MO) programming approach. The objectives of such approach are the minimization of power losses and operation cost of the DGs. The comparison of the reactive power support provided by switched CBs and DGs is carried out using a modified IEEE 34 bus distribution test system.
Resumo:
This paper presents a new approach for solving constraint optimization problems (COP) based on the philosophy of lexicographical goal programming. A two-phase methodology for solving COP using a multi-objective strategy is used. In the first phase, the objective function is completely disregarded and the entire search effort is directed towards finding a single feasible solution. In the second phase, the problem is treated as a bi-objective optimization problem, turning the constraint optimization into a two-objective optimization. The two resulting objectives are the original objective function and the constraint violation degree. In the first phase a methodology based on progressive hardening of soft constraints is proposed in order to find feasible solutions. The performance of the proposed methodology was tested on 11 well-known benchmark functions.
Resumo:
This paper proposes an alternative codification to solve the service restoration in electric power distribution networks using a SPEA2 multiobjective evolutionary algorithm, assuming the minimization of both the load not supplied and the number of switching operations involved in the restoration plan. Constrains as the line, power source and voltage drop limits in order to avoid the activation of protective devices are all included in the proposed algorithm. Experimental results have shown the convenience on considering these new representations in the sense of feasibility maintenance and also in the sense of better approximation to the Pareto set. ©2009 IEEE.
Resumo:
In this paper, a novel methodology to price the reactive power support ancillary service of Distributed Generators (DGs) with primary energy source uncertainty is shown. The proposed methodology provides the service pricing based on the Loss of Opportunity Costs (LOC) calculation. An algorithm is proposed to reduce the uncertainty present in these generators using Multiobjective Power Flows (MOPFs) implemented in multiple probabilistic scenarios through Monte Carlo Simulations (MCS), and modeling the time series associated with the generation of active power from DGs through Markov Chains (MC). © 2011 IEEE.
Resumo:
The high active and reactive power level demanded by the distribution systems, the growth of consuming centers, and the long lines of the distribution systems result in voltage variations in the busses compromising the quality of energy supplied. To ensure the energy quality supplied in the distribution system short-term planning, some devices and actions are used to implement an effective control of voltage, reactive power, and power factor of the network. Among these devices and actions are the voltage regulators (VRs) and capacitor banks (CBs), as well as exchanging the conductors sizes of distribution lines. This paper presents a methodology based on the Non-Dominated Sorting Genetic Algorithm (NSGA-II) for optimized allocation of VRs, CBs, and exchange of conductors in radial distribution systems. The Multiobjective Genetic Algorithm (MGA) is aided by an inference process developed using fuzzy logic, which applies specialized knowledge to achieve the reduction of the search space for the allocation of CBs and VRs.
Resumo:
Traditionally, ancillary services are supplied by large conventional generators. However, with the huge penetration of distributed generators (DGs) as a result of the growing interest in satisfying energy requirements, and considering the benefits that they can bring along to the electrical system and to the environment, it appears reasonable to assume that ancillary services could also be provided by DGs in an economical and efficient way. In this paper, a settlement procedure for a reactive power market for DGs in distribution systems is proposed. Attention is directed to wind turbines connected to the network through synchronous generators with permanent magnets and doubly-fed induction generators. The generation uncertainty of this kind of DG is reduced by running a multi-objective optimization algorithm in multiple probabilistic scenarios through the Monte Carlo method and by representing the active power generated by the DGs through Markov models. The objectives to be minimized are the payments of the distribution system operator to the DGs for reactive power, the curtailment of transactions committed in an active power market previously settled, the losses in the lines of the network, and a voltage profile index. The proposed methodology was tested using a modified IEEE 37-bus distribution test system. © 1969-2012 IEEE.
Resumo:
This paper presents a mixed integer nonlinear programming multiobjective model for short-term planning of distribution networks that considers in an integrated manner the following planning activities: allocation of capacitor banks; voltage regulators; the cable replacement of branches and feeders. The objective functions considered in the proposed model are: to minimize operational and investment costs and minimize the voltage deviations in the the network buses, subject to a set of technical and operational constraints. A multiobjective genetic algorithm based on a Non-Dominated Sorting Genetic Algorithm (NSGA-II) is proposed to solve this model. The proposed mathematical model and solution methodology is validated testing a medium voltage distribution system with 135 buses. © 2013 Brazilian Society for Automatics - SBA.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Este trabalho apresenta um método para encontrar um conjunto de pontos de operação, os quais são ótimos de Pareto com diversidade, para linhas digitais de assinante (DSL - digital subscriber line). Em diversos trabalhos encontrados na literatura, têm sido propostos algoritmos para otimização da transmissão de dados em linhas DSL, que fornecem como resultado apenas um ponto de operação para os modems. Esses trabalhos utilizam, em geral, algoritmos de balanceamento de espectro para resolver um problema de alocação de potência, o que difere da abordagem apresentada neste trabalho. O método proposto, chamado de diverseSB , utiliza um processo híbrido composto de um algoritmo evolucionário multiobjetivo (MOEA - multi-objective evolutionary algorithm), mais precisamente, um algoritmo genético com ordenamento por não-dominância (NSGA-II - Non-Dominated Sorting Genetic Algorithm II), e usando ainda, um algoritmo de balanceamento de espectro. Os resultados obtidos por simulações mostram que, para uma dada diversidade, o custo computacional para determinar os pontos de operação com diversidade usando o algoritmo diverseSB proposto é muito menor que métodos de busca de “força bruta”. No método proposto, o NSGA-II executa chamadas ao algoritmo de balanceamento de espectro adotado, por isso, diversos testes envolvendo o mesmo número de chamadas ao algoritmo foram realizadas com o método diverseSB proposto e o método de busca por força bruta, onde os resultados obtidos pelo método diverseSB proposto foram bem superiores do que os resultados do método de busca por força bruta. Por exemplo, o método de força bruta realizando 1600 chamadas ao algoritmo de balanceamento de espectro, obtém um conjunto de pontos de operação com diversidade semelhante ao do método diverseSB proposto com 535 chamadas.