992 resultados para Monozyten, dendritische Zellen, Makrophagen, DNA-Reparatur, ROS, Ionisierende Strahlung, Temozolomid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relevance of reactive oxygen species (ROS) in the pathogenesis of inflammatory diseases is widely documented. Immunochemical detection of ROS DNA adducts has been developed, however, recognition of glyoxal-DNA adducts has not previously been described. We have generated a polyclonal antibody that has shown increased antibody binding to ROS-modified DNA in comparison to native DNA. In addition, dose-dependent antibody binding to DNA modified with ascorbate alone was shown, with significant inhibition by desferrioxamine, catalase, and ethanol. Minimal inhibition was observed with uric acid, 1,10-phenanthroline and DMSO. However, antibody binding in the presence of EDTA increased 3500-fold. The involvement of hydrogen peroxide and hydroxyl radical in ascorbate-mediated DNA damage is consistent with ascorbate acting as a reducing agent for DNA-bound metal ions. Glyoxal is known to be formed during oxidation of ascorbate. Glyoxylated DNA, that previously had been proposed as a marker of oxidative damage, was recognised in a dose dependent manner using the antibody. We describe the potential use of our anti-ROS DNA antibody, that detects predominantly Fenton-type mediated damage to DNA and report on its specificity for the recognition of glyoxal-DNA adducts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reactive oxygen species (ROS) are released at sites of inflammation during the respiratory burst which accompanies the phagocytic process. Using an in vitro system to simulate this process we have shown that ROS induce antigenic changes in DNA. More specifically, results of experiments using ROS scavengers have shown that hydroxyl radicals produced in close proximity to DNA-bound metal ions play a predominant role. ROS-mediated attack resulted in increased binding of anti-DNA antibodies to the denatured DNA. These changes were detected using IgG, IgA and IgM isotype binding to antibodies in systemic lupus erythematosus sera. Of these the IgA isotype was most discriminating in its detection of hydroxyl radical-induced damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sugarcane is an important culture for Brazil that holds almost half of all worldwide productivity. Plants face many challenges, because of biotic and abiotic stresses presents in the production field, which could prevent plants from reaching their genetic potential. As consequence, those stresses can generate Reactive Oxygen Species – ROS – that can cause damages on DNA. Another consequence of stress is the early-flowering process, which contributes for a reduction on yield. In this context, the aim of this work is to characterize ScMUTM1 and ScMUTM2, two DNA glycosylases belonging to base excision repair pathway; and identify genes potentially related to stress and DNA repair in two sugarcane cultivars with contrasting flowering phenotypes. The characterization of the DNA glycosylases included the construction of vector to over express the recombinant proteins ScMUTM1 and ScMUTM2; they will be used in a near future to purification of these proteins and use in enzymatic assays. It was also made a phylogenetic reconstruction of this gene in plants and analysis of its promoter. With the phylogenetic analysis, it is possible to observe the presence of these genes grouped inside a branch with monocots and another one with dicots. This suggests that the duplication of this gene probably occurred after the separation of these two groups. The analysis of the promotor of MUTM shows of the presence of stress-related regulatory motifs at ScMUTM2 promoter, when compared with ScMUTM1. This may suggests that ScMUTM1 might be suffering sub functionalization process. After the analysis of microarrays data, it is observed an up-regulation from some stress-related genes in one of the conditions analyzed, related to early flowering process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sugarcane is an important culture for Brazil that holds almost half of all worldwide productivity. Plants face many challenges, because of biotic and abiotic stresses presents in the production field, which could prevent plants from reaching their genetic potential. As consequence, those stresses can generate Reactive Oxygen Species – ROS – that can cause damages on DNA. Another consequence of stress is the early-flowering process, which contributes for a reduction on yield. In this context, the aim of this work is to characterize ScMUTM1 and ScMUTM2, two DNA glycosylases belonging to base excision repair pathway; and identify genes potentially related to stress and DNA repair in two sugarcane cultivars with contrasting flowering phenotypes. The characterization of the DNA glycosylases included the construction of vector to over express the recombinant proteins ScMUTM1 and ScMUTM2; they will be used in a near future to purification of these proteins and use in enzymatic assays. It was also made a phylogenetic reconstruction of this gene in plants and analysis of its promoter. With the phylogenetic analysis, it is possible to observe the presence of these genes grouped inside a branch with monocots and another one with dicots. This suggests that the duplication of this gene probably occurred after the separation of these two groups. The analysis of the promotor of MUTM shows of the presence of stress-related regulatory motifs at ScMUTM2 promoter, when compared with ScMUTM1. This may suggests that ScMUTM1 might be suffering sub functionalization process. After the analysis of microarrays data, it is observed an up-regulation from some stress-related genes in one of the conditions analyzed, related to early flowering process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In different types of myeloid leukemia, increased formation of reactive oxygen species (ROS) has been noted and associated with aspects of cell transformation including the promotion of leukemic cell proliferation and migration, as well as DNA-damage and accumulation of mutations. Work reviewed in this article has shown the involvement of NADPH oxidase (NOX)-derived ROS downstream of oncogenic protein-tyrosine kinases in both processes, and the related pathways have been partially identified. FLT3-ITD, an important oncoprotein in a subset of AML, causes activation of AKT and subsequently stabilization of p22phox, a regulatory subunit for NOX1-4. This process is linked to ROS formation and DNA damage. Moreover, FLT3-ITD signaling through STAT5 enhances expression of NOX4, ROS formation and inactivation of the protein-tyrosine phosphatase DEP-1/PTPRJ, a negative regulator of FLT3 signaling, by reversible oxidation of its catalytic cysteine residue. Genetic inactivation of NOX4 restored DEP-1 activity and attenuated cell transformation by FLT3-ITD in vitro and in vivo. Future work is required to further explore these mechanisms and their causal involvement in leukemic cell transformation, which may result in the identification of novel candidate targets for therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exposure to the antiepileptic drug valproic acid (VPA) is associated with an increased risk of congenital malformations including heart, skeletal and most frequently neural tube defects. Although the mechanisms contributing to its teratogenesis are not well understood, VPA was previously shown to increase homologous recombination (HR)-mediated DNA repair and decrease protein expression of the transcription factor NF-κB/p65. The studies in this thesis utilized in vivo and in vitro models to evaluate the expression of HR mediators, investigate the implications of decreased p65 including DNA binding and transcriptional activation, and the expression and histone acetyltransferase activity of Cbp/p300 with an aim to provide mechanistic insight into VPA-mediated alterations. The first study demonstrated that following maternal administration of VPA, mouse embryonic mRNA expression of HR mediators Rad51, Brca1 and Brca2 exhibited temporal and tissue-specific alterations. Protein expression of Rad51 was similarly altered and preceded increased cleavage of caspase-3 and PARP; indicative of apoptosis. The second study confirms previous findings of decreased total cellular p65 protein using P19 cells, but is the first to demonstrate that nuclear p65 protein is unchanged. NF-κB DNA binding was decreased following VPA exposure and maybe mediated by decreased p50 protein, which dimerizes with p65 prior to DNA binding. Transcriptional activity of NF-κB was also increased with VPA exposure which was not due to increased p65 phosphorylation at Ser276. Furthermore, the transcriptional activation capacity was unaffected by VPA exposure as combined exposure to VPA and TNFα additively increased NF-κB activity. The third study demonstrated that VPA exposure in P19 cells decreased Cbp/p300 total cellular and nuclear protein attributed primarily to ubiquitin proteasome-mediated degradation. Histone acetyltransferase (HAT) activity of p300 was decreased proportionately to nuclear protein following VPA exposure. Inhibition of Cbp/p300 HAT activity decreased p65 total cellular protein, increased caspase-3 cleavage and ROS similar to VPA exposures. Furthermore, pre-treatment with the antioxidant enzyme catalase attenuated the increase in caspase-3 cleavage, but not p65 protein. Overall, this thesis demonstrates that VPA exposure impacts the expression and activity of the transcription factor NF-κB and transcriptional co-activators/HATs Cbp/p300, which has implications for downstream VPA targets including Rad51, Brca1 and Brca2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract: It is well established that ionizing radiation induces a variety of damage in DNA by direct effects that are mediated by one-electron oxidation and indirect effects that are mediated by the reaction of water radiolysis products, e.g., hydroxyl radicals (•OH). In cellular DNA, direct and indirect effects appear to have about an equal effect toward DNA damage. We have shown that ϒ-(gamma) ray irradiation of aqueous solutions of DNA, during which •OH is the major damaging ROS can lead to the formation several lesions. On the other hand, the methylation and oxidative demethylation of cytosine in CpG dinucleotides plays a critical role in the gene regulation. The C5 position of cytosine in CG dinucleotides is frequently methylated by DNA methyl transferees (DNMTs) and constitutes 4-5% of the total cytosine. Here, my PhD research work focuses on the analysis of oxidative base modifications of model compounds of methylated and non methylated oligonucleotides, isolated DNA (calf-thymus DNA) and F98 cultured cell by gamma radiation. In addition, we identified a series of modifications of the 2-deoxyribose moiety of DNA arising from the exposure of isolated and cellular DNA to ionizing radiation. We also studied one electron oxidation of cellular DNA in cultured human HeLa cells initiated by intense nanosecond 266 nm laser pulse irradiation, which produces cross-links between guanine and thymine bases (G*-T*). To achieve these goals, we developed several methods based on mass spectrometry to analyze base modifications in isolated DNA and cellular DNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anêmonas-do-mar são pólipos solitários, bentônicos, de pouca mobilidade, que habitam regiões entre-marés. Devido a estas características, são organismos que podem ser atingidos diretamente pela poluição aquática, no entanto, são pouco utilizados como modelo ecotoxicológico. O cobre é um metal essencial, que em altas concentrações pode ser tóxico, sendo bastante comum em ecossistemas marinhos. Um dos mecanismos de toxicidade do cobre envolve a produção de espécies reativas de oxigênio (ERO), podendo levar as células ao estresse oxidativo, que tem como característica danos celulares, inclusive no DNA. Muitos organismos possuem um mecanismo que bombeia os xenobióticos para fora da célula – multixenobiotic resistance (MXR) – que visa prevenir as células dos danos tóxicos causados pelo contaminante. Com isso, o presente trabalho estudou a capacidade de defesa e dano ao DNA à toxicidade causada pelo cobre em células de anêmonas Bunodosoma cangicum. Para isto, células de anêmonas, mantidas em cultura primária através de explante do disco podal, foram expostas ao cobre a duas concentrações (7,8 µg.L-1 Cu e 15,6 µg.L-1 Cu), além do grupo controle, por 6 e 24 h. Antes e após as exposições as células tiveram sua viabilidade avaliada através do método de exclusão por azul de tripan (0,08%) para analisar a citotoxicidade. Parâmetros como a indução do mecanismo MXR através do método de acúmulo de rodamina-B, espécies reativas de oxigênio e ensaio cometa, também foram avaliados. Os resultados obtidos mostram que o cobre é citotóxico, sendo constatada uma queda na viabilidade e no número de células, principalmente após 24 h de exposição, sendo que na concentração de cobre de 15,6 µg.L-1 , foi possível observar uma diminuição de 40% na viabilidade e uma redução em 36% no número de células (p < 0,05, n = 6). Em relação ao fenótipo MXR, foi observada uma ativação do mecanismo apenas naquelas células expostas ao cobre 7,8 µg.L-1 (53%) no tempo de 24 h (p < 0,05, n = 5). Na análise da geração de ERO foi observado um aumento de 11,5% naquelas células expostas por 6 h na concentração mais alta de cobre 15,6 µg.L-1 . Nas células que foram expostas por 24 h, o aumento de espécies reativas pode ser percebido já na concentração de 7,8 µg.L-1 , elevando-se para cerca de 20% quando exposto a 15,6 µg.L-1 (p < 0,05, n = 4-5). Quanto ao dano de DNA, foram vistas quebras na molécula desde 7,8 µg.L-1 Cu em 6 h, com danos ainda mais salientes naquelas células expostas por 24 h, na concentração de 7,8 µg.L -1 Cu (p < 0,05, n = 3-4), e para 15,6 µg.L-1 Cu a viabilidade celular (número de células) não permitiu a análise. Com base nestes dados, pode-se dizer que o cobre, mesmo em baixas concentrações causa estresse em células de B. cangicum, sendo citotóxico. Este metal causa estresse oxidativo com dano à molécula de DNA mesmo com a ativação do mecanismo de defesa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The formation of reactive oxygen species (ROS) within cells causes damage to biomolecules, including membrane lipids, DNA, proteins and sugars. An important type of oxidative damage is DNA base hydroxylation which leads to the formation of 8-oxo-7,8-dihydro-29-deoxyguanosine (8-oxodG) and 5-hydroxymethyluracil (5-HMUra). Measurement of these biomarkers in urine is challenging, due to the low levels of the analytes and the matrix complexity. In order to simultaneously quantify 8-oxodG and 5-HMUra in human urine, a new, reliable and powerful strategy was optimised and validated. It is based on a semi-automatic microextraction by packed sorbent (MEPS) technique, using a new digitally controlled syringe (eVolH), to enhance the extraction efficiency of the target metabolites, followed by a fast and sensitive ultrahigh pressure liquid chromatography (UHPLC). The optimal methodological conditions involve loading of 250 mL urine sample (1:10 dilution) through a C8 sorbent in a MEPS syringe placed in the semi-automatic eVolH syringe followed by elution using 90 mL of 20% methanol in 0.01% formic acid solution. The obtained extract is directly analysed in the UHPLC system using a binary mobile phase composed of aqueous 0.1% formic acid and methanol in the isocratic elution mode (3.5 min total analysis time). The method was validated in terms of selectivity, linearity, limit of detection (LOD), limit of quantification (LOQ), extraction yield, accuracy, precision and matrix effect. Satisfactory results were obtained in terms of linearity (r2 . 0.991) within the established concentration range. The LOD varied from 0.00005 to 0.04 mg mL21 and the LOQ from 0.00023 to 0.13 mg mL21. The extraction yields were between 80.1 and 82.2 %, while inter-day precision (n=3 days) varied between 4.9 and 7.7 % and intra-day precision between 1.0 and 8.3 %. This approach presents as main advantages the ability to easily collect and store urine samples for further processing and the high sensitivity, reproducibility, and robustness of eVolHMEPS combined with UHPLC analysis, thus retrieving a fast and reliable assessment of oxidatively damaged DNA.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ceramic membranes were fabricated by in situ synthesis of alumina nanofibres in the pores of an alumina support as a separation layer, and exhibited a high permeation selectivity for bovine serum albumin relative to bovine hemoglobin (over 60 times) and can effectively retain DNA molecules at high fluxes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synchronous fluorescence spectroscopy (SFS) was applied for the investigation of interactions of the antibiotic, tetracycline (TC), with DNA in the presence of aluminium ions (Al3+). The study was facilitated by the use of the Methylene Blue (MB) dye probe, and the interpretation of the spectral data with the aid of the chemometrics method, parallel factor analysis (PARAFAC). Three-way synchronous fluorescence analysis extracted the important optimum constant wavelength differences, Δλ, and showed that for the TC–Al3+–DNA, TC–Al3+ and MB dye systems, the associated Δλ values were different (Δλ = 80, 75 and 30 nm, respectively). Subsequent PARAFAC analysis demonstrated the extraction of the equilibrium concentration profiles for the TC–Al3+, TC–Al3+–DNA and MB probe systems. This information is unobtainable by conventional means of data interpretation. The results indicated that the MB dye interacted with the TC–Al3+–DNA surface complex, presumably via a reaction intermediate, TC–Al3+–DNA–MB, leading to the displacement of the TC–Al3+ by the incoming MB dye probe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To further investigate the use of DNA repair-enhancing agents for skin cancer prevention, we treated Cdk4R24C/R24C/NrasQ61K mice topically with the T4 endonuclease V DNA repair enzyme (known as Dimericine) immediately prior to neonatal ultraviolet radiation (UVR) exposure, which has a powerful effect in exacerbating melanoma development in the mouse model. Dimericine has been shown to reduce the incidence of basal-cell and squamous cell carcinoma. Unexpectedly, we saw no difference in penetrance or age of onset of melanoma after neonatal UVR between Dimericine-treated and control animals, although the drug reduced DNA damage and cellular proliferation in the skin. Interestingly, epidermal melanocytes removed cyclobutane pyrimidine dimers (CPDs) more efficiently than surrounding keratinocytes. Our study indicates that neonatal UVR-initiated melanomas may be driven by mechanisms other than solely that of a large CPD load and/or their inefficient repair. This is further suggestive of different mechanisms by which UVR may enhance the transformation of keratinocytes and melanocytes.