944 resultados para Monitoring Systems
Resumo:
Chlorinated solvents are the most ubiquitous organic contaminants found in groundwater since the last five decades. They generally reach groundwater as Dense Non-Aqueous Phase Liquid (DNAPL). This phase can migrate through aquifers, and also through aquitards, in ways that aqueous contaminants cannot. The complex phase partitioning to which chlorinated solvent DNAPLs can undergo (i.e. to the dissolved, vapor or sorbed phase), as well as their transformations (e.g. degradation), depend on the physico-chemical properties of the contaminants themselves and on features of the hydrogeological system. The main goal of the thesis is to provide new knowledge for the future investigations of sites contaminated by DNAPLs in alluvial settings, proposing innovative investigative approaches and emphasizing some of the key issues and main criticalities of this kind of contaminants in such a setting. To achieve this goal, the hydrogeologic setting below the city of Ferrara (Po plain, northern Italy), which is affected by scattered contamination by chlorinated solvents, has been investigated at different scales (regional and site specific), both from an intrinsic (i.e. groundwater flow systems) and specific (i.e. chlorinated solvent DNAPL behavior) point of view. Detailed investigations were carried out in particular in one selected test-site, known as “Caretti site”, where high-resolution vertical profiling of different kind of data were collected by means of multilevel monitoring systems and other innovative sampling and analytical techniques. This allowed to achieve a deep geological and hydrogeological knowledge of the system and to reconstruct in detail the architecture of contaminants in relationship to the features of the hosting porous medium. The results achieved in this thesis are useful not only at local scale, e.g. employable to interpret the origin of contamination in other sites of the Ferrara area, but also at global scale, in order to address future remediation and protection actions of similar hydrogeologic settings.
Resumo:
Zeitreihen sind allgegenwärtig. Die Erfassung und Verarbeitung kontinuierlich gemessener Daten ist in allen Bereichen der Naturwissenschaften, Medizin und Finanzwelt vertreten. Das enorme Anwachsen aufgezeichneter Datenmengen, sei es durch automatisierte Monitoring-Systeme oder integrierte Sensoren, bedarf außerordentlich schneller Algorithmen in Theorie und Praxis. Infolgedessen beschäftigt sich diese Arbeit mit der effizienten Berechnung von Teilsequenzalignments. Komplexe Algorithmen wie z.B. Anomaliedetektion, Motivfabfrage oder die unüberwachte Extraktion von prototypischen Bausteinen in Zeitreihen machen exzessiven Gebrauch von diesen Alignments. Darin begründet sich der Bedarf nach schnellen Implementierungen. Diese Arbeit untergliedert sich in drei Ansätze, die sich dieser Herausforderung widmen. Das umfasst vier Alignierungsalgorithmen und ihre Parallelisierung auf CUDA-fähiger Hardware, einen Algorithmus zur Segmentierung von Datenströmen und eine einheitliche Behandlung von Liegruppen-wertigen Zeitreihen.rnrnDer erste Beitrag ist eine vollständige CUDA-Portierung der UCR-Suite, die weltführende Implementierung von Teilsequenzalignierung. Das umfasst ein neues Berechnungsschema zur Ermittlung lokaler Alignierungsgüten unter Verwendung z-normierten euklidischen Abstands, welches auf jeder parallelen Hardware mit Unterstützung für schnelle Fouriertransformation einsetzbar ist. Des Weiteren geben wir eine SIMT-verträgliche Umsetzung der Lower-Bound-Kaskade der UCR-Suite zur effizienten Berechnung lokaler Alignierungsgüten unter Dynamic Time Warping an. Beide CUDA-Implementierungen ermöglichen eine um ein bis zwei Größenordnungen schnellere Berechnung als etablierte Methoden.rnrnAls zweites untersuchen wir zwei Linearzeit-Approximierungen für das elastische Alignment von Teilsequenzen. Auf der einen Seite behandeln wir ein SIMT-verträgliches Relaxierungschema für Greedy DTW und seine effiziente CUDA-Parallelisierung. Auf der anderen Seite führen wir ein neues lokales Abstandsmaß ein, den Gliding Elastic Match (GEM), welches mit der gleichen asymptotischen Zeitkomplexität wie Greedy DTW berechnet werden kann, jedoch eine vollständige Relaxierung der Penalty-Matrix bietet. Weitere Verbesserungen umfassen Invarianz gegen Trends auf der Messachse und uniforme Skalierung auf der Zeitachse. Des Weiteren wird eine Erweiterung von GEM zur Multi-Shape-Segmentierung diskutiert und auf Bewegungsdaten evaluiert. Beide CUDA-Parallelisierung verzeichnen Laufzeitverbesserungen um bis zu zwei Größenordnungen.rnrnDie Behandlung von Zeitreihen beschränkt sich in der Literatur in der Regel auf reellwertige Messdaten. Der dritte Beitrag umfasst eine einheitliche Methode zur Behandlung von Liegruppen-wertigen Zeitreihen. Darauf aufbauend werden Distanzmaße auf der Rotationsgruppe SO(3) und auf der euklidischen Gruppe SE(3) behandelt. Des Weiteren werden speichereffiziente Darstellungen und gruppenkompatible Erweiterungen elastischer Maße diskutiert.
Resumo:
L’uso dei materiali compositi è andato aumentando negli ultimi decenni per la loro elevata rigidezza, la resistenza specifica e il possibile risparmio, notevole in termini di peso dell’intera struttura. Tali materiali introducono però nuove problematiche riguardanti le modalità di danneggiamento e il comportamento a fatica. Mentre questi fenomeni sono relativamente ben compresi nei materiali metallici, per una struttura in composito non esistono ancora modelli in grado di predire con sufficiente affidabilità l’evoluzione del danneggiamento. Negli ultimi anni la ricerca si è focalizzata sullo sviluppo di sistemi in grado di rilevare la presenza e l’evoluzione del danno, definiti Structural Health Monitoring Systems, ovvero sistemi di monitoraggio strutturale. Il danneggiamento strutturale può così essere individuato e identificato per mezzo di sensori distribuiti integrati nella struttura stessa, aventi la possibilità di trasmettere queste informazioni a un sistema di analisi esterno permettendo di valutare lo stato di degrado della struttura in tempo reale. In questo contesto si inseriscono le attività di ricerca sulle strutture intelligenti che, inglobando al loro interno opportune tipologie di sensori e attuatori, sono in grado di monitorare l’ambiente fisico operativo, raccoglierne e interpretarne le informazioni per poi rispondere ai cambiamenti della struttura in modo appropriato attraverso gli attuatori. L’impiego di sensori e attuatori inglobati nelle strutture offre molteplici vantaggi rispetto ai sistemi di trasduzione e attuazione convenzionali. L’attività di ricerca condotta in questa tesi è rivolta all’indagine di tecniche di SHM per mezzo di sensori a fibra ottica. Essi presentano molteplici peculiarità che li rendono i candidati ideali per queste applicazioni. Esistono diversi tipi di sensori che utilizzano le fibre ottiche. Nel presente lavoro si sono utilizzati sensori di deformazione basati sui reticoli di Bragg (FBG) chirped. Questi sensori sono costituiti da un reticolo inscritto all’interno della fibra, che ha l’effetto di riflettere solo alcune lunghezze d’onda della luce incidente. Se le proprietà geometriche del reticolo cambiano per effetto di una deformazione, cambia anche la forma dello spettro riflesso. Inoltre, con il tipo di sensore usato, è possibile correlare lo spettro con la posizione di eventuali danneggiamenti interni al materiale. Gli obbiettivi di questa ricerca sono di verificare gli effetti della presenza di una fibra ottica sulle caratteristiche meccaniche di un laminato e di trovare un legame tra la risposta in frequenza del sensore FBG e lo stato tensionale e il grado di danneggiamento di un componente in composito.
Resumo:
Groundwater represents the most important raw material. Germany struggles to maintain the best water quality possible by providing advanced monitoring systems and legal measures to prevent further pollution. In areas involved in the intensive growing of plantations, one of the major contamination factors derives from nitrate. The aim of this master thesis is the characterisation of the Water Protection Area of Bremen (Germany). Denitrification is a natural process, representing the best means of natural reduction of the hazardous nitrate ion, which is dangerous both for human health and for the development of eutrophication. The study has been possible thanks to the collaboration with the University of Bremen, the Geological Service of Bremen (GDfB) and Peter Spiedt (Water Supply Company of Bremen). It will be defined whether nitrate amounts in the groundwater still overcome the threshold legally imposed, and state if the denitrification process takes place, thanks to new samples collected in 2015 and their integration with historical data. Gas samples have been gathered to test them with the “N2/Ar method”, which is able to estimate the denitrification rate quantitatively. Analyses stated the effective occurrence of the reaction, nevertheless showing that it only affects the chemical of the deep aquifers and not shallow ones. Temporal trends concentrations of nitrate have shown that no real improvement took place in the past years. It will be commented that despite the denitrification being responsible for an efficacious lowering in the nitrate ion, it needs reactive materials to take place. Since the latter are finite elements, it is not an endless process. It is thus believed that is clearly necessary to adopt a better attitude in order to maintain the best chemical qualities possible in such an important area, providing drinking water.
Resumo:
We propose a novel methodology to generate realistic network flow traces to enable systematic evaluation of network monitoring systems in various traffic conditions. Our technique uses a graph-based approach to model the communication structure observed in real-world traces and to extract traffic templates. By combining extracted and user-defined traffic templates, realistic network flow traces that comprise normal traffic and customized conditions are generated in a scalable manner. A proof-of-concept implementation demonstrates the utility and simplicity of our method to produce a variety of evaluation scenarios. We show that the extraction of templates from real-world traffic leads to a manageable number of templates that still enable accurate re-creation of the original communication properties on the network flow level.
Resumo:
Beim Laser-Sintern wird das Pulverbett durch Heizstrahler vorgeheizt, um an der Pulveroberfläche eine Temperatur knapp unterhalb des Materialschmelzpunktes zu erzielen. Dabei soll die Temperaturverteilung auf der Oberfläche möglichst homogen sein, um gleiche Bauteileigenschaften im gesamten Bauraum zu erzielen und den Bauteilverzug gering zu halten. Erfahrungen zeigen jedoch sehr inhomogene Temperaturverteilungen, weshalb oftmals die Integration von neuen oder optimierten Prozessüberwachungssystemen in die Anlagen gefordert wird. Ein potentiell einsetzbares System sind Thermographiekameras, welche die flächige Aufnahme von Oberflächentemperaturen und somit Aussagen über die Temperaturen an der Pulverbettoberfläche erlauben. Dadurch lassen sich kalte Bereiche auf der Oberfläche identifizieren und bei der Prozessvorbereitung berücksichtigen. Gleichzeitig ermöglicht die Thermografie eine Beobachtung der Temperaturen beim Lasereingriff und somit das Ableiten von Zusammenhängen zwischen Prozessparametern und Schmelzetemperaturen. Im Rahmen der durchgeführten Untersuchungen wurde ein IR-Kamerasystem erfolgreich als Festeinbau in eine Laser-Sinteranlage integriert und Lösungen für die hierbei auftretenden Probleme erarbeitet. Anschließend wurden Untersuchungen zur Temperaturverteilung auf der Pulverbettoberfläche sowie zu den Einflussfaktoren auf deren Homogenität durchgeführt. In weiteren Untersuchungen wurden die Schmelzetemperaturen in Abhängigkeit verschiedener Prozessparameter ermittelt. Auf Basis dieser Messergebnisse wurden Aussagen über erforderliche Optimierungen getroffen und die Nutzbarkeit der Thermografie beim Laser-Sintern zur Prozessüberwachung, -regelung sowie zur Anlagenwartung als erster Zwischenstand der Untersuchungen bewertet.
Resumo:
This chapter aims to overcome the gap existing between case study research, which typically provides qualitative and process-based insights, and national or global inventories that typically offer spatially explicit and quantitative analysis of broader patterns, and thus to present adequate evidence for policymaking regarding large-scale land acquisitions. Therefore, the chapter links spatial patterns of land acquisitions to underlying implementation processes of land allocation. Methodologically linking the described patterns and processes proved difficult, but we have identified indicators that could be added to inventories and monitoring systems to make linkage possible. Combining complementary approaches in this way may help to determine where policy space exists for more sustainable governance of land acquisitions, both geographically and with regard to processes of agrarian transitions. Our spatial analysis revealed two general patterns: (i) relatively large forestry-related acquisitions that target forested landscapes and often interfere with semi-subsistence farming systems; and (ii) smaller agriculture-related acquisitions that often target existing cropland and also interfere with semi-subsistence systems. Furthermore, our meta-analysis of land acquisition implementation processes shows that authoritarian, top-down processes dominate. Initially, the demands of powerful regional and domestic investors tend to override socio-ecological variables, local actors’ interests, and land governance mechanisms. As available land grows scarce, however, and local actors gain experience dealing with land acquisitions, it appears that land investments begin to fail or give way to more inclusive, bottom-up investment models.
Resumo:
In this study, retrievals of the medium resolution imaging spectrometer (MERIS) reflectances and water quality products using 4 different coastal processing algorithms freely available are assessed by comparison against sea-truthing data. The study is based on a pair-wise comparison using processor-dependent quality flags for the retrieval of valid common macro-pixels. This assessment is required in order to ensure the reliability of monitoring systems based on MERIS data, such as the Swedish coastal and lake monitoring system (http.vattenkvalitet.se). The results show that the pre-processing with the Improved Contrast between Ocean and Land (ICOL) processor, correcting for adjacency effects, improve the retrieval of spectral reflectance for all processors, Therefore, it is recommended that the ICOL processor should be applied when Baltic coastal waters are investigated. Chlorophyll was retrieved best using the FUB (Free University of Berlin) processing algorithm, although overestimations in the range 18-26.5%, dependent on the compared pairs, were obtained. At low chlorophyll concentrations (< 2.5 mg/m**3), random errors dominated in the retrievals with the MEGS (MERIS ground segment processor) processor. The lowest bias and random errors were obtained with MEGS for suspended particulate matter, for which overestimations in te range of 8-16% were found. Only the FUB retrieved CDOM (Coloured Dissolved Organic Matter) correlate with in situ values. However, a large systematic underestimation appears in the estimates that nevertheless may be corrected for by using a~local correction factor. The MEGS has the potential to be used as an operational processing algorithm for the Himmerfjärden bay and adjacent areas, but it requires further improvement of the atmospheric correction for the blue bands and better definition at relatively low chlorophyll concentrations in presence of high CDOM attenuation.
Resumo:
The design of nuclear power plant has to follow a number of regulations aimed at limiting the risks inherent in this type of installation. The goal is to prevent and to limit the consequences of any possible incident that might threaten the public or the environment. To verify that the safety requirements are met a safety assessment process is followed. Safety analysis is as key component of a safety assessment, which incorporates both probabilistic and deterministic approaches. The deterministic approach attempts to ensure that the various situations, and in particular accidents, that are considered to be plausible, have been taken into account, and that the monitoring systems and engineered safety and safeguard systems will be capable of ensuring the safety goals. On the other hand, probabilistic safety analysis tries to demonstrate that the safety requirements are met for potential accidents both within and beyond the design basis, thus identifying vulnerabilities not necessarily accessible through deterministic safety analysis alone. Probabilistic safety assessment (PSA) methodology is widely used in the nuclear industry and is especially effective in comprehensive assessment of the measures needed to prevent accidents with small probability but severe consequences. Still, the trend towards a risk informed regulation (RIR) demanded a more extended use of risk assessment techniques with a significant need to further extend PSA’s scope and quality. Here is where the theory of stimulated dynamics (TSD) intervenes, as it is the mathematical foundation of the integrated safety assessment (ISA) methodology developed by the CSN(Consejo de Seguridad Nuclear) branch of Modelling and Simulation (MOSI). Such methodology attempts to extend classical PSA including accident dynamic analysis, an assessment of the damage associated to the transients and a computation of the damage frequency. The application of this ISA methodology requires a computational framework called SCAIS (Simulation Code System for Integrated Safety Assessment). SCAIS provides accident dynamic analysis support through simulation of nuclear accident sequences and operating procedures. Furthermore, it includes probabilistic quantification of fault trees and sequences; and integration and statistic treatment of risk metrics. SCAIS comprehensively implies an intensive use of code coupling techniques to join typical thermal hydraulic analysis, severe accident and probability calculation codes. The integration of accident simulation in the risk assessment process and thus requiring the use of complex nuclear plant models is what makes it so powerful, yet at the cost of an enormous increase in complexity. As the complexity of the process is primarily focused on such accident simulation codes, the question of whether it is possible to reduce the number of required simulation arises, which will be the focus of the present work. This document presents the work done on the investigation of more efficient techniques applied to the process of risk assessment inside the mentioned ISA methodology. Therefore such techniques will have the primary goal of decreasing the number of simulation needed for an adequate estimation of the damage probability. As the methodology and tools are relatively recent, there is not much work done inside this line of investigation, making it a quite difficult but necessary task, and because of time limitations the scope of the work had to be reduced. Therefore, some assumptions were made to work in simplified scenarios best suited for an initial approximation to the problem. The following section tries to explain in detail the process followed to design and test the developed techniques. Then, the next section introduces the general concepts and formulae of the TSD theory which are at the core of the risk assessment process. Afterwards a description of the simulation framework requirements and design is given. Followed by an introduction to the developed techniques, giving full detail of its mathematical background and its procedures. Later, the test case used is described and result from the application of the techniques is shown. Finally the conclusions are presented and future lines of work are exposed.
Resumo:
La diabetes mellitus es el conjunto de alteraciones provocadas por un defecto en la cantidad de insulina secretada o por un aprovechamiento deficiente de la misma. Es causa directa de complicaciones a corto, medio y largo plazo que disminuyen la calidad y las expectativas de vida de las personas con diabetes. La diabetes mellitus es en la actualidad uno de los problemas más importantes de salud. Ha triplicado su prevalencia en los últimos 20 anos y para el año 2025 se espera que existan casi 300 millones de personas con diabetes. Este aumento de la prevalencia junto con la morbi-mortalidad asociada a sus complicaciones micro y macro-vasculares convierten la diabetes en una carga para los sistemas sanitarios, sus recursos económicos y sus profesionales, haciendo de la enfermedad un problema individual y de salud pública de enormes proporciones. De momento no existe cura a esta enfermedad, de modo que el objetivo terapéutico del tratamiento de la diabetes se centra en la normalización de la glucemia intentando minimizar los eventos de hiper e hipoglucemia y evitando la aparición o al menos retrasando la evolución de las complicaciones vasculares, que constituyen la principal causa de morbi-mortalidad de las personas con diabetes. Un adecuado control diabetológico implica un tratamiento individualizado que considere multitud de factores para cada paciente (edad, actividad física, hábitos alimentarios, presencia de complicaciones asociadas o no a la diabetes, factores culturales, etc.). Sin embargo, a corto plazo, las dos variables más influyentes que el paciente ha de manejar para intervenir sobre su nivel glucémico son la insulina administrada y la dieta. Ambas presentan un retardo entre el momento de su aplicación y el comienzo de su acción, asociado a la absorción de los mismos. Por este motivo la capacidad de predecir la evolución del perfil glucémico en un futuro cercano, ayudara al paciente a tomar las decisiones adecuadas para mantener un buen control de su enfermedad y evitar situaciones de riesgo. Este es el objetivo de la predicción en diabetes: adelantar la evolución del perfil glucémico en un futuro cercano para ayudar al paciente a adaptar su estilo de vida y sus acciones correctoras, con el propósito de que sus niveles de glucemia se aproximen a los de una persona sana, evitando así los síntomas y complicaciones de un mal control. La aparición reciente de los sistemas de monitorización continua de glucosa ha proporcionado nuevas alternativas. La disponibilidad de un registro exhaustivo de las variaciones del perfil glucémico, con un periodo de muestreo de entre uno y cinco minutos, ha favorecido el planteamiento de nuevos modelos que tratan de predecir la glucemia utilizando tan solo las medidas anteriores de glucemia o al menos reduciendo significativamente la información de entrada a los algoritmos. El hecho de requerir menor intervención por parte del paciente, abre nuevas posibilidades de aplicación de los predictores de glucemia, haciéndose viable su uso en tiempo real, como sistemas de ayuda a la decisión, como detectores de situaciones de riesgo o integrados en algoritmos automáticos de control. En esta tesis doctoral se proponen diferentes algoritmos de predicción de glucemia para pacientes con diabetes, basados en la información registrada por un sistema de monitorización continua de glucosa así como incorporando la información de la insulina administrada y la ingesta de carbohidratos. Los algoritmos propuestos han sido evaluados en simulación y utilizando datos de pacientes registrados en diferentes estudios clínicos. Para ello se ha desarrollado una amplia metodología, que trata de caracterizar las prestaciones de los modelos de predicción desde todos los puntos de vista: precisión, retardo, ruido y capacidad de detección de situaciones de riesgo. Se han desarrollado las herramientas de simulación necesarias y se han analizado y preparado las bases de datos de pacientes. También se ha probado uno de los algoritmos propuestos para comprobar la validez de la predicción en tiempo real en un escenario clínico. Se han desarrollado las herramientas que han permitido llevar a cabo el protocolo experimental definido, en el que el paciente consulta la predicción bajo demanda y tiene el control sobre las variables metabólicas. Este experimento ha permitido valorar el impacto sobre el control glucémico del uso de la predicción de glucosa. ABSTRACT Diabetes mellitus is the set of alterations caused by a defect in the amount of secreted insulin or a suboptimal use of insulin. It causes complications in the short, medium and long term that affect the quality of life and reduce the life expectancy of people with diabetes. Diabetes mellitus is currently one of the most important health problems. Prevalence has tripled in the past 20 years and estimations point out that it will affect almost 300 million people by 2025. Due to this increased prevalence, as well as to morbidity and mortality associated with micro- and macrovascular complications, diabetes has become a burden on health systems, their financial resources and their professionals, thus making the disease a major individual and a public health problem. There is currently no cure for this disease, so that the therapeutic goal of diabetes treatment focuses on normalizing blood glucose events. The aim is to minimize hyper- and hypoglycemia and to avoid, or at least to delay, the appearance and development of vascular complications, which are the main cause of morbidity and mortality among people with diabetes. A suitable, individualized and controlled treatment for diabetes involves many factors that need to be considered for each patient: age, physical activity, eating habits, presence of complications related or unrelated to diabetes, cultural factors, etc. However, in the short term, the two most influential variables that the patient has available in order to manage his/her glycemic levels are administered insulin doses and diet. Both suffer from a delay between their time of application and the onset of the action associated with their absorption. Therefore, the ability to predict the evolution of the glycemic profile in the near future could help the patient to make appropriate decisions on how to maintain good control of his/her disease and to avoid risky situations. Hence, the main goal of glucose prediction in diabetes consists of advancing the evolution of glycemic profiles in the near future. This would assist the patient in adapting his/her lifestyle and in taking corrective actions in a way that blood glucose levels approach those of a healthy person, consequently avoiding the symptoms and complications of a poor glucose control. The recent emergence of continuous glucose monitoring systems has provided new alternatives in this field. The availability of continuous records of changes in glycemic profiles (with a sampling period of one or five minutes) has enabled the design of new models which seek to predict blood glucose by using automatically read glucose measurements only (or at least, reducing significantly the data input manually to the algorithms). By requiring less intervention by the patient, new possibilities are open for the application of glucose predictors, making its use feasible in real-time applications, such as: decision support systems, hypo- and hyperglycemia detectors, integration into automated control algorithms, etc. In this thesis, different glucose prediction algorithms are proposed for patients with diabetes. These are based on information recorded by a continuous glucose monitoring system and incorporate information of the administered insulin and carbohydrate intakes. The proposed algorithms have been evaluated in-silico and using patients’ data recorded in different clinical trials. A complete methodology has been developed to characterize the performance of predictive models from all points of view: accuracy, delay, noise and ability to detect hypo- and hyperglycemia. In addition, simulation tools and patient databases have been deployed. One of the proposed algorithms has additionally been evaluated in terms of real-time prediction performance in a clinical scenario in which the patient checked his/her glucose predictions on demand and he/she had control on his/her metabolic variables. This has allowed assessing the impact of using glucose prediction on glycemic control. The tools to carry out the defined experimental protocols were also developed in this thesis.
Resumo:
La computación distribuida ha estado presente desde hace unos cuantos años, pero es quizás en la actualidad cuando está contando con una mayor repercusión. En los últimos años el modelo de computación en la nube (Cloud computing) ha ganado mucha popularidad, prueba de ello es la cantidad de productos existentes. Todo sistema informático requiere ser controlado a través de sistemas de monitorización que permiten conocer el estado del mismo, de tal manera que pueda ser gestionado fácilmente. Hoy en día la mayoría de los productos de monitorización existentes limitan a la hora de visualizar una representación real de la arquitectura de los sistemas a monitorizar, lo que puede dificultar la tarea de los administradores. Es decir, la visualización que proporcionan de la arquitectura del sistema, en muchos casos se ve influenciada por el diseño del sistema de visualización, lo que impide ver los niveles de la arquitectura y las relaciones entre estos. En este trabajo se presenta un sistema de monitorización para sistemas distribuidos o Cloud, que pretende dar solución a esta problemática, no limitando la representación de la arquitectura del sistema a monitorizar. El sistema está formado por: agentes, que se encargan de la tarea de recolección de las métricas del sistema monitorizado; un servidor, al que los agentes le envían las métricas para que las almacenen en una base de datos; y una aplicación web, a través de la que se visualiza toda la información. El sistema ha sido probado satisfactoriamente con la monitorización de CumuloNimbo, una plataforma como servicio (PaaS), que ofrece interfaz SQL y procesamiento transaccional altamente escalable sobre almacenes clave valor. Este trabajo describe la arquitectura del sistema de monitorización, y en concreto, el desarrollo de la principal contribución al sistema, la aplicación web. ---ABSTRACT---Distributed computing has been around for quite a long time, but now it is becoming more and more important. In the last few years, cloud computing, a branch of distributed computing has become very popular, as its different products in the market can prove. Every computing system requires to be controlled through monitoring systems to keep them functioning correctly. Currently, most of the monitoring systems in the market only provide a view of the architectures of the systems monitored, which in most cases do not permit having a real view of the system. This lack of vision can make administrators’ tasks really difficult. If they do not know the architecture perfectly, controlling the system based on the view that the monitoring system provides is extremely complicated. The project introduces a new monitoring system for distributed or Cloud systems, which shows the real architecture of the system. This new system is composed of several elements: agents, which collect the metrics of the monitored system; a server, which receives the metrics from the agents and saves them in a database; and a web application, which shows all the data collected in an easy way. The monitoring system has been tested successfully with Cumulonimbo. CumuloNimbo is a platform as a service (PaaS) which offers an SQL interface and a high-scalable transactional process. This platform works over key-value storage. This project describes the architecture of the monitoring system, especially, the development of the web application, which is the main contribution to the system.
Resumo:
Este proyecto surge por la problemática ocasionada por elevadas cantidades de ruido ambiental producido por aviones en sus operaciones cotidianas como despegue, aterrizaje o estacionamiento, que afecta a zonas pobladas cercanas a recintos aeroportuarios. Una solución para medir y evaluar los niveles producidos por el ruido aeronáutico son los sistemas de monitorado de ruido. Gracias a ellos se puede tener un control acústico y mejorar la contaminación ambiental en las poblaciones que limitan con los aeropuertos. El objetivo principal será la elaboración de un prototipo de sistema de monitorado de ruido capaz de medir el mismo en tiempo real, así como detectar y evaluar eventos sonoros provocados por aviones. Para ello se cuenta con un material específico: ordenador portátil, tarjeta de sonido externa de dos canales, dos micrófonos y un software de medida diseñado y desarrollado por el autor. Este será el centro de control del sistema. Para su programación se utilizará la plataforma y entorno de desarrollo LabVIEW. La realización de esta memoria se estructurará en tres partes. La primera parte está dedicada al estado del arte, en la que se explicarán algunos de los conceptos teóricos que serán utilizados para la elaboración del proyecto. En la segunda parte se explica la metodología seguida para la realización del sistema de monitorado. En primer lugar se describe el equipo usado, a continuación se expone como se realizó el software de medida así como su arquitectura general y por último se describe la interfaz al usuario. La última parte presenta los experimentos realizados que demuestran el correcto funcionamiento del sistema. ABSTRACT. This project addresses for the problematics caused by high quantities of environmental noise produced by planes in his daily operations as takeoff, landing or parking produced in populated areas nearly to airport enclosures. A solution to measure and to evaluate the levels produced by the aeronautical noise are aircraft noise monitoring systems. Thanks to these systems it is possible to have an acoustic control and improve the acoustic pollution in the populations who border on the airports. The main objective of this project is the production of a noise monitoring systems prototype capable of measuring real time noise, beside detecting and to evaluate sonorous events produced by planes. The specific material used is portable computer,sound external card of two channels, two microphones and a software of measure designed and developed by the author. This one will be the control center of the system. For his programming is used the platform of development LabVIEW. This memory is structured in three parts. The first part is dedicated to the condition of the art, in that will be explained some of the theoretical concepts that will be used for the production of the project. The second phase is to explain the methodology followed for the development of the noise monitoring systems. First a description of the used equipment, the next step, it is exposed how was realized the software of measure and his general architecture and finally is described the software user interface. The last part presents the realized experiments that demonstrate the correct use of the system.
Resumo:
Las redes de sensores inalámbricas son uno de los sectores con más crecimiento dentro de las redes inalámbricas. La rápida adopción de estas redes como solución para muchas nuevas aplicaciones ha llevado a un creciente tráfico en el espectro radioeléctrico. Debido a que las redes inalámbricas de sensores operan en las bandas libres Industrial, Scientific and Medical (ISM) se ha producido una saturación del espectro que en pocos años no permitirá un buen funcionamiento. Con el objetivo de solucionar este tipo de problemas ha aparecido el paradigma de Radio Cognitiva (CR). La introducción de las capacidades cognitivas en las redes inalámbricas de sensores permite utilizar estas redes para aplicaciones con unos requisitos más estrictos respecto a fiabilidad, cobertura o calidad de servicio. Estas redes que aúnan todas estas características son llamadas redes de sensores inalámbricas cognitivas (CWSNs). La mejora en prestaciones de las CWSNs permite su utilización en aplicaciones críticas donde antes no podían ser utilizadas como monitorización de estructuras, de servicios médicos, en entornos militares o de vigilancia. Sin embargo, estas aplicaciones también requieren de otras características que la radio cognitiva no nos ofrece directamente como, por ejemplo, la seguridad. La seguridad en CWSNs es un aspecto poco desarrollado al ser una característica no esencial para su funcionamiento, como pueden serlo el sensado del espectro o la colaboración. Sin embargo, su estudio y mejora es esencial de cara al crecimiento de las CWSNs. Por tanto, esta tesis tiene como objetivo implementar contramedidas usando las nuevas capacidades cognitivas, especialmente en la capa física, teniendo en cuenta las limitaciones con las que cuentan las WSNs. En el ciclo de trabajo de esta tesis se han desarrollado dos estrategias de seguridad contra ataques de especial importancia en redes cognitivas: el ataque de simulación de usuario primario (PUE) y el ataque contra la privacidad eavesdropping. Para mitigar el ataque PUE se ha desarrollado una contramedida basada en la detección de anomalías. Se han implementado dos algoritmos diferentes para detectar este ataque: el algoritmo de Cumulative Sum y el algoritmo de Data Clustering. Una vez comprobado su validez se han comparado entre sí y se han investigado los efectos que pueden afectar al funcionamiento de los mismos. Para combatir el ataque de eavesdropping se ha desarrollado una contramedida basada en la inyección de ruido artificial de manera que el atacante no distinga las señales con información del ruido sin verse afectada la comunicación que nos interesa. También se ha estudiado el impacto que tiene esta contramedida en los recursos de la red. Como resultado paralelo se ha desarrollado un marco de pruebas para CWSNs que consta de un simulador y de una red de nodos cognitivos reales. Estas herramientas han sido esenciales para la implementación y extracción de resultados de la tesis. ABSTRACT Wireless Sensor Networks (WSNs) are one of the fastest growing sectors in wireless networks. The fast introduction of these networks as a solution in many new applications has increased the traffic in the radio spectrum. Due to the operation of WSNs in the free industrial, scientific, and medical (ISM) bands, saturation has ocurred in these frequencies that will make the same operation methods impossible in the future. Cognitive radio (CR) has appeared as a solution for this problem. The networks that join all the mentioned features together are called cognitive wireless sensor networks (CWSNs). The adoption of cognitive features in WSNs allows the use of these networks in applications with higher reliability, coverage, or quality of service requirements. The improvement of the performance of CWSNs allows their use in critical applications where they could not be used before such as structural monitoring, medical care, military scenarios, or security monitoring systems. Nevertheless, these applications also need other features that cognitive radio does not add directly, such as security. The security in CWSNs has not yet been explored fully because it is not necessary field for the main performance of these networks. Instead, other fields like spectrum sensing or collaboration have been explored deeply. However, the study of security in CWSNs is essential for their growth. Therefore, the main objective of this thesis is to study the impact of some cognitive radio attacks in CWSNs and to implement countermeasures using new cognitive capabilities, especially in the physical layer and considering the limitations of WSNs. Inside the work cycle of this thesis, security strategies against two important kinds of attacks in cognitive networks have been developed. These attacks are the primary user emulator (PUE) attack and the eavesdropping attack. A countermeasure against the PUE attack based on anomaly detection has been developed. Two different algorithms have been implemented: the cumulative sum algorithm and the data clustering algorithm. After the verification of these solutions, they have been compared and the side effects that can disturb their performance have been analyzed. The developed approach against the eavesdropping attack is based on the generation of artificial noise to conceal information messages. The impact of this countermeasure on network resources has also been studied. As a parallel result, a new framework for CWSNs has been developed. This includes a simulator and a real network with cognitive nodes. This framework has been crucial for the implementation and extraction of the results presented in this thesis.
Resumo:
Una red inalámbrica de sensores (Wireless Sensor Network, WSN) constituye un sistema de comunicación de datos flexible utilizado como alternativa a las redes cableadas o como extensión de éstas y está compuesta por elementos de cómputo, medición y comunicación, que permiten al administrador instrumentar, observar y reaccionar a eventos y fenómenos en un ambiente específico. Una de las aplicaciones de estas redes es su uso en sistemas de predicción y prevención de incendios en áreas naturales. Su implementación se basa en el despliegue de sensores inalámbricos, realizado en una zona de riesgo de incendio para que puedan recolectar información sobre parámetros ambientales como temperatura, humedad, luz o presión, entre otros. Desde una estación base (o nodo "sumidero"), se suministra la información de los sensores a un centro de monitorización y control de forma estructurada. En este centro la información recibida puede ser analizada, procesada y visualizada en tiempo real. Desde este centro de control se puede controlar también la red WSN modificando el comportamiento de los sensores según el nivel de riesgo de incendio detectado. Este proyecto se basa en el diseño, implementación y despliegue de una red inalámbrica de sensores en un entorno simulado para observar su comportamiento en diferentes situaciones y mostrar su eficacia ante un posible caso de incendio. La implementación de este sistema denominado Sistema de Estimación de Riesgo de Incendio Utilizando una WSN (SERIUW) , junto con el desarrollado, en paralelo, de otro proyecto denominado Sistema de Control y Visualización de Información sobre Riesgo de Incendio (SCVIRI) que implementa las funciones de los centros de monitorización y control, conforman un Sistema de Anticipación y Seguimiento de Fuegos (SASF). Se han realizado pruebas de funcionalidad y eficacia, incluidas en la presente memoria del sistema unitario de en conjunto (ambos proyectos), en un entorno controlado simulado. Este sistema es una solución para la lucha contra los incendios forestales ya que predice y previene, de forma temprana, posibles incendios en las áreas naturales bajo supervisión. Ante un evento de incendio declarado este sistema es un poderoso instrumento de apoyo permitiendo, por un lado, generar alertas automáticas (con localización y gravedad de fuegos detectados) y por el otro, hacer un seguimiento del incendio con mapas en tiempo real (con su consecuente apoyo para la protección e información con las brigadas de bomberos en las zonas activas). ABSTRACT. A wireless sensor network (WSN) is a flexible data communication system used as an alternative to wired networks or as an extension of them and consists of nodes that perform calculation, measurement and communication activities. This allows the administrator to observe and react to events and phenomena in a specific environment. One application of these networks is fire prediction and prevention in natural areas. Its implementation is based on a deployment of wireless sensors, in a fire risk area, capable of collecting information such as temperature, humidity, luminance and pressure. A base station (or "sink") sends the collected information to a monitoring and control center following a structured format. At this center, the information received can be analyzed, processed and displayed in real time with monitoring systems. From this control center the WSN can also be controlled by changing the sensors behavior according to the level of fire risk detection. This project is based on the design, implementation and deployment of a Wireless Sensor Network (WSN) in a simulated environment in order to observe its behavior in different situations and show its effectiveness against a possible fire environment. The implementation of this system called SERIUW, has been done in parallel with other system, called SCVIRI, which has been developed in another project that implements the functions of monitoring and control center. Together, these two systems, make up a general system of anticipation and monitoring of fires. Functionality and performance tests have been performed on the overall system, in a controlled and simulated environment. The results of these tests are included in this document. The global system is a solution to fight the forest fires because it makes it easier to predict and prevent, early, possible fires in natural areas under supervision. This sytem can be a powerful tool since, before a fire event is declared, it generates automatic alerts (including location and severity information) and allows the real-time motorization of fire evolution integrated with maps. This could be also very useful for the support protection and information of fire brigades in zones in which a fire is already active.
Resumo:
Uno de los mayores retos para la comunidad científica es conseguir que las máquinas posean en un futuro la capacidad del sistema visual y cognitivo humanos, de forma que, por ejemplo, en entornos de video vigilancia, puedan llegar a proporcionar de manera automática una descripción fiable de lo que está ocurriendo en la escena. En la presente tesis, mediante la propuesta de un marco de trabajo de referencia, se discuten y plantean los pasos necesarios para el desarrollo de sistemas más inteligentes capaces de extraer y analizar, a diferentes niveles de abstracción y mediante distintos módulos de procesamiento independientes, la información necesaria para comprender qué está sucediendo en un conjunto amplio de escenarios de distinta naturaleza. Se parte de un análisis de requisitos y se identifican los retos para este tipo de sistemas en la actualidad, lo que constituye en sí mismo los objetivos de esta tesis, contribuyendo así a un modelo de datos basado en el conocimiento que permitirá analizar distintas situaciones en las que personas y vehículos son los actores principales, dejando no obstante la puerta abierta a la adaptación a otros dominios. Así mismo, se estudian los distintos procesos que se pueden lanzar a nivel interno así como la necesidad de integrar mecanismos de realimentación a distintos niveles que permitan al sistema adaptarse mejor a cambios en el entorno. Como resultado, se propone un marco de referencia jerárquico que integra las capacidades de percepción, interpretación y aprendizaje para superar los retos identificados en este ámbito; y así poder desarrollar sistemas de vigilancia más robustos, flexibles e inteligentes, capaces de operar en una variedad de entornos. Resultados experimentales ejecutados sobre distintas muestras de datos (secuencias de vídeo principalmente) demuestran la efectividad del marco de trabajo propuesto respecto a otros propuestos en el pasado. Un primer caso de estudio, permite demostrar la creación de un sistema de monitorización de entornos de parking en exteriores para la detección de vehículos y el análisis de plazas libres de aparcamiento. Un segundo caso de estudio, permite demostrar la flexibilidad del marco de referencia propuesto para adaptarse a los requisitos de un entorno de vigilancia completamente distinto, como es un hogar inteligente donde el análisis automático de actividades de la vida cotidiana centra la atención del estudio. ABSTRACT One of the most ambitious objectives for the Computer Vision and Pattern Recognition research community is that machines can achieve similar capacities to the human's visual and cognitive system, and thus provide a trustworthy description of what is happening in the scene under surveillance. Thus, a number of well-established scenario understanding architectural frameworks to develop applications working on a variety of environments can be found in the literature. In this Thesis, a highly descriptive methodology for the development of scene understanding applications is presented. It consists of a set of formal guidelines to let machines extract and analyse, at different levels of abstraction and by means of independent processing modules that interact with each other, the necessary information to understand a broad set of different real World surveillance scenarios. Taking into account the challenges that working at both low and high levels offer, we contribute with a highly descriptive knowledge-based data model for the analysis of different situations in which people and vehicles are the main actors, leaving the door open for the development of interesting applications in diverse smart domains. Recommendations to let systems achieve high-level behaviour understanding will be also provided. Furthermore, feedback mechanisms are proposed to be integrated in order to let any system to understand better the environment and the logical context around, reducing thus the uncertainty and noise, and increasing its robustness and precision in front of low-level or high-level errors. As a result, a hierarchical cognitive architecture of reference which integrates the necessary perception, interpretation, attention and learning capabilities to overcome main challenges identified in this area of research is proposed; thus allowing to develop more robust, flexible and smart surveillance systems to cope with the different requirements of a variety of environments. Once crucial issues that should be treated explicitly in the design of this kind of systems have been formulated and discussed, experimental results shows the effectiveness of the proposed framework compared with other proposed in the past. Two case studies were implemented to test the capabilities of the framework. The first case study presents how the proposed framework can be used to create intelligent parking monitoring systems. The second case study demonstrates the flexibility of the system to cope with the requirements of a completely different environment, a smart home where activities of daily living are performed. Finally, general conclusions and future work lines to further enhancing the capabilities of the proposed framework are presented.