983 resultados para Molecular medicine


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mechanisms responsible for the determination of phenotypes are still not well understood; however, it has become apparent that modifier genes must play a considerable role in the phenotypic heterogeneity of Mendelian disorders. Significant advances in genetic technologies and molecular medicine allow huge amounts of information to be generated from individual samples within a reasonable time frame. This review focuses on the role of modifier genes using the example of cystic fibrosis, the most common lethal autosomal recessive disorder in the white population, and discusses the advantages and limitations of candidate gene approaches versus genome-wide association studies. Moreover, the implications of modifier gene research for other monogenic disorders, as well as its significance for diagnostic, prognostic, and therapeutic approaches are summarized. Increasing insight into modifying mechanisms opens up new perspectives, dispelling the idea of genetic disorders being caused by one single gene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PLACENTAL GLUCOSE TRANSPORTER (GLUT)-1 REGULATION IN PREECLAMPSIA Camilla Marini a,b, Benjamin P. Lüscher a,b, Marianne J€orger-Messerli a,b, Ruth Sager a,b, Xiao Huang c, Jürg Gertsch c, Matthias A. Hediger c, Christiane Albrecht c, Marc U. Baumann a,c, Daniel V. Surbek a,c a Department of Obstetrics and Gynecology, University Hospital of Bern, Bern, Switzerland, Switzerland; b Department of Clinical Research, University of Bern, Bern, Switzerland, Switzerland; c Institute for Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland, Switzerland Objectives: Glucose is a primary energy source for the fetus. The absence of significant gluconeogenesis in the fetus means that the fetal up-take of this vital nutrient is dependent on maternal supply and subsequent transplacental transport. Altered expression and/or function of placental transporters may affect the intrauterine environment and could compromise fetal and mother well-being. We speculated that pre-eclampsia (PE) impairs the placental glucose transport system. Methods: Placentae were obtained after elective caesarean sections following normal pregnancies and pre-eclamptic pregnancies. Syncytial basal membrane (BM) and apical microvillus membrane (MVM) fractions were prepared using differential ultra-centrifugation and magnesium precipitation. Protein expression was assessed by western blot analysis. mRNA levels in whole villous tissue lysate were quantified by real-time PCR. To assess glucose transport activity a radiolabeled substrate up-take assay and a transepithelial transport model using primary cytotrophoblasts were established. Results: GLUT1 mRNA expression was not changed in PE when compared to control, whereas protein expression was significantly down-regulated. Glucose up-take into syncytial microvesicles was reduced in PE compared to control. In a transepithelial transport model, phloretinmediated inhibition of GLUT1 at the apical side of primary cytotrophoblasts showed a 44% of reduction of transepithelial glucose transport at IC50. Conclusions: GLUT1 is down-regulated on protein and functional level in PE compared to control. Altering glucose transport activity by inhibition of apical GLUT-1 indicates that transplacental glucose transport might be regulated on the apical side of the syncytiotrophoblast. These results might help to understand better the regulation of GLUT1 transporter and maybe in future to develop preventive strategies to modulate the fetal programming and thereby reduce the incidence of disease for both the mother and her child later in life.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exposure of biological membranes to reactive oxygen species creates a complex mixture of distinct oxidized phospholipid (OxPL) species, which contribute to the development of chronic inflammatory diseases and metabolic disorders. While the ability of OxPL to modulate biological processes is increasingly recognized, the nature of the biologically active OxPL species and the molecular mechanisms underlying their signaling remain largely unknown. We have employed a combination of mass spectrometry, synthetic chemistry, and immunobiology approaches to characterize the OxPL generated from the abundant phospholipid 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (PAPC) and investigated their bioactivities and signaling pathways in vitro and in vivo. Our study defines epoxycyclopentenones as potent anti-inflammatory lipid mediators that mimic the signaling of endogenous, pro-resolving prostanoids by activating the transcription factor nuclear factor E2-related factor 2 (Nrf2). Using a library of OxPL variants, we identified a synthetic OxPL derivative, which alleviated endotoxin-induced lung injury and inhibited development of pro-inflammatory T helper (Th) 1 cells. These findings provide a molecular basis for the negative regulation of inflammation by lipid peroxidation products and propose a novel class of highly bioactive compounds for the treatment of inflammatory diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Autophagy, a fundamental cellular catabolic process, is involved in the development of numerous diseases including cancer. Autophagy seems to have an ambivalent impact on tumor development. While increasing evidence indicates a cytoprotective role for autophagy that can contribute to resistance against chemotherapy and even against the adverse, hypoxic environment of established tumors, relatively few publications focus on the role of autophagy in early tumorigenesis. However, the consensus is that autophagy is inhibitory for the genesis of tumors. To understand this apparent contradiction, more detailed information about the roles of the individual participants in autophagy is needed. This review will address this topic with respect to autophagy-related protein 5 (ATG5), which in several lines of investigation has been ascribed special significance in the autophagic pathway. Furthermore, it was recently shown that an ATG5 deficiency in melanocytes interferes with oncogene-induced senescence, thus promoting melanoma tumorigenesis. Similarly, an ATG5 deficiency resulted in tumors of the lung and liver in experimental mouse models. Taken together, these findings indicate that ATG5 and the autophagy to which it contributes are essential gatekeepers restricting early tumorigenesis in multiple tissues.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

G(M1)-gangliosidosis is a lysosomal storage disorder caused by a deficiency of ss-galactosidase activity. Human GM1-gangliosidosis has been classified into three forms according to the age of clinical onset and specific biochemical parameters. In the present study, a canine model for type II late infantile human GM1-gangliosidosis was investigated 'in vitro' in detail. For a better understanding of the molecular pathogenesis underlying G(M1)-gangliosidosis the study focused on the analysis of the molecular events and subsequent intracellular protein trafficking of beta-galactosidase. In the canine model the genetic defect results in exclusion or inclusion of exon 15 in the mRNA transcripts and to translation of two mutant precursor proteins. Intracellular localization, processing and enzymatic activity of these mutant proteins were investigated. The obtained results suggested that the beta-galactosidase C-terminus encoded by exons 15 and 16 is necessary for correct C-terminal proteolytic processing and enzyme activity but does not affect the correct routing to the lysosomes. Both mutant protein precursors are enzymatically inactive, but are transported to the lysosomes clearly indicating that the amino acid sequences encoded by exons 15 and 16 are necessary for correct folding and association with protective protein/cathepsin A, whereas the routing to the lysosomes is not influenced. Thus, the investigated canine model is an appropriate animal model for the human late infantile form and represents a versatile system to test gene therapeutic approaches for human and canine G(M1)-gangliosidosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Replacement of growth hormone (GH) in patients suffering from GH deficiency (GHD) offers clinical benefits on body composition, exercise capacity, and skeletal integrity. However, GH replacement therapy (GHRT) is also associated with insulin resistance, but the mechanisms are incompletely understood. We demonstrate that in GH-deficient mice (growth hormone-releasing hormone receptor (Ghrhr)(lit/lit)), insulin resistance after GHRT involves the upregulation of the extracellular matrix (ECM) and the downregulation of microRNA miR-29a in skeletal muscle. Based on RNA deep sequencing of skeletal muscle from GH-treated Ghrhr(lit/lit) mice, we identified several upregulated genes as predicted miR-29a targets that are negative regulators of insulin signaling or profibrotic/proinflammatory components of the ECM. Using gain- and loss-of-function studies, five of these genes were confirmed as endogenous targets of miR-29a in human myotubes (PTEN, COL3A1, FSTL1, SERPINH1, SPARC). In addition, in human myotubes, IGF1, but not GH, downregulated miR-29a expression and upregulated COL3A1. These results were confirmed in a group of GH-deficient patients after 4 months of GHRT. Serum IGF1 increased, skeletal muscle miR-29a decreased, and miR-29a targets were upregulated in patients with a reduced insulin response (homeostatic model assessment of insulin resistance (HOMA-IR)) after GHRT. We conclude that miR-29a could contribute to the metabolic response of muscle tissue to GHRT by regulating ECM components and PTEN. miR-29a and its targets might be valuable biomarkers for muscle metabolism following GH replacement. KEY MESSAGES GHRT most significantly affects the ECM cluster in skeletal muscle from mice. GHRT downregulates miR-29a and upregulates miR-29a targets in skeletal muscle from mice. PTEN, COL3A1, FSTL1, SERPINH1, and SPARC are endogenous miR-29a targets in human myotubes. IGF1 decreases miR-29a levels in human myotubes. miR-29a and its targets are regulated during GHRT in skeletal muscle from humans.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Endometriosis affects approximately 15% of reproductive aged women and is associated with chronic pelvic pain and infertility. However, the molecular mechanisms by which endometriosis impacts fertility are poorly understood. The developmentally regulated, imprinted H19 long noncoding RNA (lncRNA) functions to reduce the bioavailability of microRNA let-7 by acting as a molecular sponge. Here we report that H19 expression is significantly decreased in the eutopic endometrium of women with endometriosis as compared to normal controls. We show that decreased H19 increases let-7 activity, which in turn inhibits Igf1r expression at the post-transcriptional level, thereby contributing to reduced proliferation of endometrial stromal cells. We propose that perturbation of this newly identified H19/Let-7/IGF1R regulatory pathway may contribute to impaired endometrial preparation and receptivity for pregnancy in women with endometriosis. Our finding represents the first example of a lncRNA-based mechanism in endometriosis and its associated infertility, thus holding potential in the development of novel therapeutics for women with endometriosis and infertility.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Endometriosis is a gynaecological condition with an associated chronic inflammatory response. The ectopic growth of 'lesions', consisting of endometrial cells outside the uterine cavity, stimulates an inflammatory response initiating the activation of macrophages, and resulting in increased cytokine and growth factor concentrations in the peritoneal fluid (PF). Endometriosis‑associated inflammation is chronic and long lasting. In patients with endometriosis, the risk of developing ovarian cancer within 10 years, particularly of the endometrioid or clear cell subtype, is increased 2.5‑4 times. Endometriosis creates a peritoneal environment that exposes the affected endometriotic and the normal ovarian surface epithelial cells to agents that have been suggested to be involved in the pathogenesis of cancer. Concentrations of several cytokines and growth factors were increased in the PF of patients with endometriosis. The ovarian cancer marker, CA125, was one such growth factor; however, this remains to be confirmed. Human epididymis protein 4 (HE4) was detected at high concentrations in patients with ovarian cancer and was identified as the best biomarker for the detection of ovarian cancer. The present study determined the levels of HE4 and CA125 in the peritoneal fluid of 258 patients with and 100 control individuals without endometriosis attending the Department of Obstetrics and Gynaecology, University of Berne (Berne, Switzerland) between 2007 and 2014. The cases were subdivided into groups without hormonal treatment (n=107), or treated with combined oral contraceptives (n=45), continuous gestagens (n=56) or GnRH agonists (n=50). Both of these markers were significantly increased in the non‑treated endometriosis samples compared with the control group. Hormone treatment with either of the three agents mentioned resulted in the concentration of CA125 returning to the control levels and the concentration of HE4 decreasing to below the control levels. CA125, however not HE4, significantly differed between the proliferative and secretory cycle phases. Since HE4 is sensitive to hormonal treatment and robust towards menstrual cycle variation, HE4 is potentially superior to CA125 as an endometriosis marker and therefore has greater potential as a marker for the identification of women at risk of developing ovarian cancer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Medulloblastoma is the most common malignant childhood brain tumor and is associated with a poor outcome. There is an urgent need to develop novel targeted therapeutic approaches for medulloblastoma, which will arise from an enhanced understanding of the disease at the molecular level. Medulloblastoma has been recognized to be a heterogeneous disease, and no recurrent cancer gene mutations have been found, although many of the mutations described so far affect key intracellular signaling pathways, such as sonic hedgehog (SHH) and Wnt/β-catenin. The PI3K/AKT/mTOR (PAM) signaling pathway controls key cellular responses, such as cell growth and proliferation, survival, migration and metabolism. Over the last decades, it has been recognized that this intracellular signaling pathway is frequently activated by genetic and epigenetic alterations in malignant brain tumors, including medulloblastoma. Clinical trials have started to evaluate the safety and efficacy of agents targeting this pathway in malignant brain tumors. Due to the complexity of the PAM signaling pathway, there remain significant difficulties in the development of novel therapeutic approaches. The future challenges in developing effective treatments for cancer patients include the development of predictive biomarkers and combinatorial approaches to effectively target multiple signal transduction pathways. In this review article, we will summarize the current knowledge about the role of PAM signaling in medulloblastoma and discuss the strategies that are currently being evaluated with targeted agents against this pathway.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sepsis is a major cause for death worldwide. Numerous interventional trials with agents neutralizing single pro-inflammatory mediators have failed to improve survival in sepsis and aseptic systemic inflammatory response syndromes. This failure could well be explained by the widespread gene expression dysregulation known as "genomic storm" in these patients. A multifunctional polyspecific therapeutic agent might be needed to thwart the effects of this "storm". Licensed pooled intravenous immunoglobulin preparations seemed to be a promising candidate but they have also failed in their present form to prevent sepsis-related death. We report here the protective effect of a single dose of intravenous immunoglobulin preparations with additionally enhanced polyspecificity in three models of sepsis and aseptic systemic inflammation. The modification of the pooled immunoglobulin G molecules by exposure to ferrous ions resulted in their newly acquired ability to bind some pro-inflammatory molecules, complement components and endogenous "danger" signals. The improved survival in endotoxemia was associated with serum levels of pro-inflammatory cytokines, diminished complement consumption and normalization of the coagulation time. We suggest that intravenous immunoglobulin preparations with additionally enhanced polyspecificity have a clinical potential in sepsis and related systemic inflammatory syndromes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The large size of many novel therapeutics impairs their transport through the tumor extracellular matrix and thus limits their therapeutic effectiveness. We propose that extracellular matrix composition, structure, and distribution determine the transport properties in tumors. Furthermore, because the characteristics of the extracellular matrix largely depend on the tumor–host interactions, we postulate that diffusion of macromolecules will vary with tumor type as well as anatomical location. Diffusion coefficients of macromolecules and liposomes in tumors growing in cranial windows (CWs) and dorsal chambers (DCs) were measured by fluorescence recovery after photobleaching. For the same tumor types, diffusion of large molecules was significantly faster in CW than in DC tumors. The greater diffusional hindrance in DC tumors was correlated with higher levels of collagen type I and its organization into fibrils. For molecules with diameters comparable to the interfibrillar space the diffusion was 5- to 10-fold slower in DC than in CW tumors. The slower diffusion in DC tumors was associated with a higher density of host stromal cells that synthesize and organize collagen type I. Our results point to the necessity of developing site-specific drug carriers to improve the delivery of molecular medicine to solid tumors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The circulating blood exerts a force on the vascular endothelium, termed fluid shear stress (FSS), which directly impacts numerous vascular endothelial cell (VEC) functions. For example, high rates of linear and undisturbed (i.e. laminar) blood flow maintains a protective and quiescent VEC phenotype. Meanwhile, deviations in blood flow, which can occur at vascular branchpoints and large curvatures, create areas of low, and/or oscillatory FSS, and promote a pro-inflammatory, pro-thrombotic and hyperpermeable phenotype. Indeed, it is known that these areas are prone to the development of atherosclerotic lesions. Herein, we show that cyclic nucleotide phosphodiesterase (PDE) 4D (PDE4D) activity is increased by FSS in human arterial endothelial cells (HAECs) and that this activation regulates the activity of cAMP-effector protein, Exchange Protein-activated by cAMP-1 (EPAC1), in these cells. Importantly, we also show that these events directly and critically impact HAEC responses to FSS, especially when FSS levels are low. Both morphological events induced by FSS, as measured by changes in cell alignment and elongation in the direction of FSS, and the expression of critical FSS-regulated genes, including Krüppel-like factor 2 (KLF2), endothelial nitric oxide synthase (eNOS) and thrombomodlin (TM), are mediated by EPAC1/PDE4D signaling. At a mechanistic level, we show that EPAC1/PDE4D acts through the vascular endothelial-cadherin (VECAD)/ platelet-cell adhesion molecule-1 (PECAM1)/vascular endothelial growth factor receptor 2 (VEGFR2) mechanosensor to activate downstream signaling though Akt. Given the critical role of PDE4D in mediating these effects, we also investigated the impact of various patterns of FSS on the expression of individual PDE genes in HAECs. Notably, PDE2A was significantly upregulated in response to high, laminar FSS, while PDE3A was upregulated under low, oscillatory FSS conditions only. These data may provide novel therapeutic targets to limit FSS-dependent endothelial cell dysfunction (ECD) and atherosclerotic development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Programmed cell death, apoptosis, is a highly regulated process that removes damaged or unwanted cells in vivo and has significant immunological implications. Defective clearance of apoptotic cells by macrophages (professional phagocytes) is known to result in chronic inflammatory and autoimmune disease. Tissue transglutaminase 2 (TG2) is a Ca2+-dependent protein cross linking enzyme known to play an important role in a number of cell functions. Up-regulation of TG2 is thought to be involved in monocyte to macrophage differentiation and defective clearance of apoptotic cells by TG2 null mice has been described though in this context the role of TG2 is yet to be fully elucidated. Cell surface-associated TG2 is now recognized as being important in regulating cell adhesion and migration, via its association with cell surface receptors such as syndecan-4, ß1 and ß3 integrin, but its extracellular role in the clearance of apoptotic cells is still not fully explored. Our work aims to characterize the role of TG2 and its partners (e.g. syndecan-4 and ß3 integrin) in macrophage function within the framework of apoptotic cell clearance. Both THP-1 cell-derived macrophage-like cells and primary human macrophages were analyzed for the expression and function of TG2. Macrophage-apoptotic cell interaction studies in the presence of TG2 inhibitors (both cell permeable and impermeable, irreversible and active site directed) resulted in significant inhibition of interaction indicating a possible role for TG2 in apoptotic cell clearance. Macrophage cell surface TG2 and, in particular, its cell surface crosslinking activity was found to be crucial in dictating apoptotic cell clearance. Our further studies demonstrate syndecan-4 association with TG2 and imply possible cooperation of these proteins in apoptotic cell clearance. Knockdown studies of syndecan-4 reveal its importance in apoptotic cell clearance. Our current findings suggest that TG2 has a crucial but yet to be fully defined role in apoptotic cell clearance which seems to involve protein cross linking and interaction with other cell surface receptors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Preeclampsia (PE) is characterized by widespread endothelial damage with hypertension, proteinuria, glomeruloendotheliosis and elevated soluble Flt-1 (sFlt-1), a natural occurring antagonist of vascular endothelial growth factor (VEGF). Cancer patients receiving anti-VEGF therapy exhibit similar symptoms. We suggested that a decrease in circulating sFlt-1 would alleviate the symptoms associated with PE. Adenoviral (Adv) overexpression of sFlt-1 induced proteinuria, caused glomerular damage and increase in blood pressure in female Balb/c mice. Circulating level of sFlt-1 above 50 ng/ml plasma induced severe vascular damage and glomerular endotheliosis. Albumin concentration in urine was elevated up to 30-fold, compared to control AdvGFP-treated animals. The threshold of kidney damage was in the range of 20-30 ng/ml sFlt-1 in plasma (8-15 ng/ml in urine). Co-administration of AdvsFlt-1 with AdvVEGF to neutralize circulating sFlt-1 resulted in more than a 70% reduction in free sFlt-1 in plasma, more than 80% reduction in urine and rescued the damaging effect of sFlt-1 on the kidneys. This demonstrates that below a critical threshold sFlt-1 fails to elicit damage to the fenestrated endothelium and that co-expression of VEGF is able to rescue effects mediated by sFlt-1 overexpression.