939 resultados para Molecular mechanism


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The selective withdrawal of pituitary gonadotropins through specific antibodies is known to cause disruption of spermatogenesis. The cellular mechanism responsible for the degenerative changes under isolated effect of luteinizing hormone (LH) deprivation is not clear. Using antibodies specific to LH we have investigated the effect of immunoneutralization of LH on apoptotic cell death in the testicular cells of the immature and the adult rats. Specific neutralization of LH resulted in apoptotic cell death of germ cells, both in the immature and the adult rats. The germ cells from control animals showed predominantly high molecular weight DNA, while the antiserum treated group showed DNA cleavage into low molecular weight DNA ladder characteristic of apoptosis. This pattern could be observed within 24 h of a/s administration and the effect could be reversed by testosterone. The germ cells were purified by centrifugal elutriation and the vulnerability of germ cell types to undergo apoptosis under LH deprivation was investigated. The round spermatids and the pachytene spermatocytes were found to be the most sensitive germ cells to lack of LH and underwent apoptosis. Interestingly, spermatogonial cells were found to be the least sensitive germ cells to the lack of LH in terms of apoptotic cell death. Results show that LH, in addition to being involved in the germ cell differentiation, is also involved in cell survival and prevent degeneration of germ cells during spermatogenesis. Apoptotic DNA fragmentation may serve as a useful marker for the study of hormonal regulation of spermatogenesis and the specific neutralization of gonadotropic hormones can be a reliable model for the study of the molecular mechanism of apoptosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chromosomal translocations are one of the most common types of genetic rearrangements and are molecular signatures for many types of cancers. They are considered as primary causes for cancers, especially lymphoma and leukemia. Although many translocations have been reported in the last four decades, the mechanism by which chromosomes break during a translocation remains largely unknown. In this review, we summarize recent advances made in understanding the molecular mechanism of chromosomal translocations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Species of opportunistic mycobacteria are the major causative agent for disseminating pulmonary infections in immuno-compromised individuals. These naturally resistant strains recruit a unique type of glycolipid known as glycopeptidolipids (GPLs), noncovalently attached to the outer surface of their thick lipid rich cell envelope. Species specific GPLs constitute the chemical determinants of most nontuberculous mycobacterial serotypes, and their absence from the cell surface confers altered colony morphology, hydrophobicity, and inability to grow as biofilms. The objective of this review is to present a comprehensive account and highlight the renewed interest on this much neglected group of pleiotropic molecules with respect to their structural diversity and biosynthesis. In addition, the role of GPLs in mycobacterial survival, both intracellular and in the environment is also discussed. It also explores the possibility of identifying new targets for intervening Mycobacterium avium complex-related infections. These antigenic molecules have been considered to play a pivotal role in immune suppression and can also induce various cytokine mediated innate immune responses, the molecular mechanism of which remains obscure. (c) 2012 IUBMB IUBMB Life, 2012

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During meiosis, long-range interaction between homologous chromosomes is thought to be crucial for homology recognition, exchange of DNA strands, and production of normal haploid gametes. However, little is known about the identity of the proteins involved and the actual molecular mechanism(s) by which chromosomes recognize and recombine with their appropriate homologous partners. Single-molecule analyses have the potential to provide insights into our understanding of this fascinating and long-standing question. Using atomic force microscopy and magnetic tweezers techniques, we discovered that Hop1 protein, a key structural component of Saccharomyces cerevisiae synaptonemal complex, exhibits the ability to bridge noncontiguous DNA segments into intramolecular stem-loop structures in which the DNA segments appear to be fully synapsed within the filamentous protein stems. Additional evidence suggests that Hop1 folds DNA into rigid protein DNA filaments and higher-order nucleoprotein structures. Importantly, Hop1 promotes robust intra- and intermolecular synapsis between double-stranded DNA molecules, suggesting that juxtaposition of DNA sequences may assist in strand exchange between homologues by recombination-associated proteins. Finally, the evidence from ensemble experiments is consistent with the notion that Hop1 causes rigidification of DNA molecules. These results provide the first direct evidence for long-range protein-mediated DNA DNA synapsis, independent of crossover recombination, which is presumed to occur during meiotic recombination.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The molecular mechanism of antimony-resistant Leishmania donovani ((SbLD)-L-R)-driven up-regulation of IL-10 and multidrug-resistant protein 1 (MDR1) in infected macrophages (M phi s) has been investigated. This study showed that both promastigote and amastigote forms of (SbLD)-L-R, but not the antimony-sensitive form of LD, express a unique glycan with N-acetylgalactosamine as a terminal sugar. Removal of it either by enzyme treatment or by knocking down the relevant enzyme, galactosyltransferase in (SbLD)-L-R (KD (SbLD)-L-R), compromises the ability to induce the above effects. Infection of M phi s with KD (SbLD)-L-R enhanced the sensitivity toward antimonials compared with infection with (SbLD)-L-R, and infection of BALB/c mice with KD (SbLD)-L-R caused significantly less organ parasite burden compared with infection induced by (SbLD)-L-R. The innate immune receptor, Toll-like receptor 2/6 heterodimer, is exploited by (SbLD)-L-R to activate ERK and nuclear translocation of NF-kappa B involving p50/c-Rel leading to IL-10 induction, whereas MDR1 up-regulation is mediated by PI3K/Akt and the JNK pathway. Interestingly both recombinant IL-10 and (SbLD)-L-R up-regulate MDR1 in M. with different time kinetics, where phosphorylation of PI3K was noted at 12 h and 48 h, respectively, but M phi s derived from IL-10(-/-) mice are unable to show MDR1 up-regulation on infection with (SbLD)-L-R. Thus, it is very likely that an IL-10 surge is a prerequisite for MDR1 up-regulation. The transcription factor important for IL-10-driven MDR1 up-regulation is c-Fos/c-Jun and not NF-kappa B, as evident from studies with pharmacological inhibitors and promoter mapping with deletion constructs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The RAD51 paralogs XRCC3 and RAD51C have been implicated in homologous recombination (HR) and DNA damage responses. However, the molecular mechanism(s) by which these paralogs regulate HR and DNA damage signaling remains obscure. Here, we show that an SQ motif serine 225 in XRCC3 is phosphorylated by ATR kinase in an ATM signaling pathway. We find that RAD51C but not XRCC2 is essential for XRCC3 phosphorylation, and this modification follows end resection and is specific to S and G(2) phases. XRCC3 phosphorylation is required for chromatin loading of RAD51 and HR-mediated repair of double-strand breaks (DSBs). Notably, in response to DSBs, XRCC3 participates in the intra-S-phase checkpoint following its phosphorylation and in the G(2)/M checkpoint independently of its phosphorylation. Strikingly, we find that XRCC3 distinctly regulates recovery of stalled and collapsed replication forks such that phosphorylation is required for the HR-mediated recovery of collapsed replication forks but is dispensable for the restart of stalled replication forks. Together, these findings suggest that XRCC3 is a new player in the ATM/ATR-induced DNA damage responses to control checkpoint and HR-mediated repair.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

CD4(+)CD25(+)FoxP3(+) regulatory T cells (Tregs) play a critical role in the maintenance of immune tolerance. Intravenous immunoglobulin (IVIg), a therapeutic preparation of normal pooled human IgG, expands Tregs in various experimental models and in patients. However, the cellular and molecular mechanisms by which IVIg expands Tregs are relatively unknown. As Treg expansion in the periphery requires signaling by antigen-presenting cells such as dendritic cells (DCs) and IVIg has been demonstrated to modulate DC functions, we hypothesized that IVIg induces distinct signaling events in DCs that subsequently mediate Treg expansion. We demonstrate that IVIg expands Tregs via induction of cyclooxygenase (COX)-2-dependent prostaglandin E2 (PGE(2)) in human DCs. However, costimulatory molecules of DCs such as programmed death ligands, OX40 ligand, and inducible T-cell costimulator ligands were not implicated. Inhibition of PGE(2) synthesis by COX-2 inhibitors prevented IVIg-mediated Treg expansion in vitro and significantly diminished IVIg-mediated Treg expansion in vivo and protection from disease in experimental autoimmune encephalomyelitis model. IVIg-mediated COX-2 expression, PGE(2) production, and Treg expansion were mediated in part via interaction of IVIg and F(ab('))(2) fragments of IVIg with DC-specific intercellular adhesion molecule-3-grabbing nonintegrin. Our results thus uncover novel cellular and molecular mechanism by which IVIg expands Tregs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cytosolic nucleotidase II (cN-II) from Legionellapneumophila (Lp) catalyzes the hydrolysis of GMP and dGMP displaying sigmoidal curves, whereas catalysis of IMP hydrolysis displayed a biphasic curve in the initial rate versus substrate concentration plots. Allosteric modulators of mammalian cN-II did not activate LpcN-II although GTP, GDP and the substrate GMP were specific activators. Crystal structures of the tetrameric LpcN-II revealed an activator-binding site at the dimer interface. A double mutation in this allosteric-binding site abolished activation, confirming the structural observations. The substrate GMP acting as an activator, partitioning between the allosteric and active site, is the basis for the sigmoidicity of the initial velocity versus GMP concentration plot. The LpcN-II tetramer showed differences in subunit organization upon activator binding that are absent in the activator-bound human cN-II structure. This is the first observation of a structural change induced by activator binding in cN-II that may be the molecular mechanism for enzyme activation. DatabaseThe coordinates and structure factors reported in this paper have been submitted to the Protein Data Bank under the accession numbers and . The accession number of GMP complexed LpcN-II is . Structured digital abstract andby() andby() Structured digital abstract was added on 5 March 2014 after original online publication]

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Muscle-specific deficiency of iron-sulfur (Fe-S) cluster scaffold protein (ISCU) leads to myopathy. Results: Cells carrying the myopathy-associated G50E ISCU mutation demonstrate impaired Fe-S cluster biogenesis and mitochondrial dysfunction. Conclusion: Reduced mitochondrial respiration as a result of diminished Fe-S cluster synthesis results in muscle weakness in myopathy patients. Significance: The molecular mechanism behind disease progression should provide invaluable information to combat ISCU myopathy. Iron-sulfur (Fe-S) clusters are versatile cofactors involved in regulating multiple physiological activities, including energy generation through cellular respiration. Initially, the Fe-S clusters are assembled on a conserved scaffold protein, iron-sulfur cluster scaffold protein (ISCU), in coordination with iron and sulfur donor proteins in human mitochondria. Loss of ISCU function leads to myopathy, characterized by muscle wasting and cardiac hypertrophy. In addition to the homozygous ISCU mutation (g.7044GC), compound heterozygous patients with severe myopathy have been identified to carry the c.149GA missense mutation converting the glycine 50 residue to glutamate. However, the physiological defects and molecular mechanism associated with G50E mutation have not been elucidated. In this report, we uncover mechanistic insights concerning how the G50E ISCU mutation in humans leads to the development of severe ISCU myopathy, using a human cell line and yeast as the model systems. The biochemical results highlight that the G50E mutation results in compromised interaction with the sulfur donor NFS1 and the J-protein HSCB, thus impairing the rate of Fe-S cluster synthesis. As a result, electron transport chain complexes show significant reduction in their redox properties, leading to loss of cellular respiration. Furthermore, the G50E mutant mitochondria display enhancement in iron level and reactive oxygen species, thereby causing oxidative stress leading to impairment in the mitochondrial functions. Thus, our findings provide compelling evidence that the respiration defect due to impaired biogenesis of Fe-S clusters in myopathy patients leads to manifestation of complex clinical symptoms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cascading energy landscapes through funneling has been postulated as a mechanistic route for achieving the lowest energy configuration of a macromolecular system (such as proteins and polymers). In particular, understanding the molecular mechanism for the melting and crystallization of polymers is a challenging fundamental question. The structural modifications that lead to the melting of poly(ethylene glycol) (PEG) are investigated here. Specific Raman bands corresponding to different configurations of the PEG chain have been identified, and the molecular structural dynamics of PEG melting have been addressed using a combination of Raman spectroscopy, 2D Raman correlation and density functional theory (DFT) calculations. The melting dynamics of PEG have been unambiguously explained along the C-O bond rotation coordinate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Dictamnus dasycarpus is widely used as a traditional remedy for the treatment of eczema, rheumatism, and other inflammatory diseases in Asia. The current study investigates the molecular mechanism of anti-inflammatory action of the ethanol extract of Dictamnus dasycarpus leaf (DE) in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Methods: Nitric oxide (NO) production was assessed by Griess reaction and the mRNA and protein expressions of pro inflammatory cytokines, transcription factor, and enzymes were determined by real-time RT-PCR and immunoblotting analysis. Results: DE (0.5 and 1 mg/mL) suppressed the NO production by 10 and 33%, respectively, compared to the untreated group in LPS-stimulated RAW 264.7 cells. DE (0.5 and 1 mg/mL) reduced the mRNA expression of key transcription factor nuclear factor-kappa B by 7 and 24%, respectively compared to the untreated group in LPS activated macrophage. The pro inflammatory cytokines such as tumor necrosis factor a and interleukin 1 beta were also decreased by DE treatment. Moreover, the protein expression of pro inflammatory enzymes, inducible nitric oxide synthase and cyclooxygenase 2 were also dramatically attenuated by DE in a dose dependent manner. Conclusions: These results suggest that Dictamnus dasycarpus leaf has a potent anti-inflammatory activity and can be used for the development of new anti-inflammatory agents.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Heat-shock protein 90 (Hsp90) is an ATP-dependent molecular chaperone that is essential for the normal functioning of eukaryotic cells. It plays crucial roles in cell signalling, cell-cycle control and in maintaining proteome integrity and protein homeostasis. In plants, Hsp90s are required for normal plant growth and development. Hsp90s are observed to be upregulated in response to various abiotic and biotic stresses and are also involved in immune responses in plants. Although there are several studies elucidating the physiological role of Hsp90s in plants, their molecular mechanism of action is still unclear. In this study, biochemical characterization of an Hsp90 protein from rice (Oryza sativa; OsHsp90) has been performed and the crystal structure of its N-terminal domain (OsHsp90-NTD) was determined. The binding of OsHsp90 to its substrate ATP and the inhibitor 17-AAG was studied by fluorescence spectroscopy. The protein also exhibited a weak ATPase activity. The crystal structure of OsHsp90-NTD was solved in complex with the nonhydrolyzable ATP analogue AMPPCP at 3.1 angstrom resolution. The domain was crystallized by cross-seeding with crystals of the N-terminal domain of Hsp90 from Dictyostelium discoideum, which shares 70% sequence identity with OsHsp90-NTD. This is the second reported structure of a domain of Hsp90 from a plant source.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thrombocytopenia is one of the most frequently observed secondary complications in many pathological conditions including liver diseases, where hyperbilirubinemia is very common. The present study sought to find the cause of thrombocytopenia in unconjugated hyperbilirubinemic conditions. Unconjugated bilirubin (UCB), an end-product of heme catabolism, is known to have pro-oxidative and cytotoxic effects at high serum concentration. We investigated the molecular mechanism underlying the pro-apoptotic effect of UCB on human platelets in vitro, and followed it up with studies in phenylhydrazine-induced hyperbilirubinemic rat model and hyperbilirubinemic human subjects. UCB is indeed found to significantly induce platelet apoptotic events including elevated endogenous reactive oxygen species generation, mitochondrial membrane depolarization, increased intracellular calcium levels, cardiolipin peroxidation and phosphatidylserine externalization (p < 0.001) as evident by FACS analysis. The immunoblots show the elevated levels of cytosolic cytochrome c and caspase activation in UCB-treated platelets. Further, UCB is found to induce mitochondrial ROS generation leading to p38 activation, followed by downstream activation of p53, ultimately resulting in altered expression of Bcl-2 and Bax proteins as evident from immunoblotting. All these parameters conclude that elevated unconjugated bilirubin causes thrombocytopenia by stimulating platelet apoptosis via mitochondrial ROS-induced p38 and p53 activation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

HuR is a ubiquitous, RNA binding protein that influences the stability and translation of several cellular mRNAs. Here, we report a novel role for HuR, as a regulator of proteins assembling at the 3' untranslated region (UTR) of viral RNA in the context of hepatitis C virus (HCV) infection. HuR relocalizes from the nucleus to the cytoplasm upon HCV infection, interacts with the viral polymerase (NS5B), and gets redistributed into compartments of viral RNA synthesis. Depletion in HuR levels leads to a significant reduction in viral RNA synthesis. We further demonstrate that the interaction of HuR with the 3' UTR of the viral RNA affects the interaction of two host proteins, La and polypyrimidine tract binding protein (PTB), at this site. HuR interacts with La and facilitates La binding to the 3' UTR, enhancing La-mediated circularization of the HCV genome and thus viral replication. In addition, it competes with PTB for association with the 3' UTR, which might stimulate viral replication. Results suggest that HuR influences the formation of a cellular/viral ribonucleoprotein complex, which is important for efficient initiation of viral RNA replication. Our study unravels a novel strategy of regulation of HCV replication through an interplay of host and viral proteins, orchestrated by HuR. IMPORTANCE Hepatitis C virus (HCV) is highly dependent on various host factors for efficient replication of the viral RNA. Here, we have shown how a host factor (HuR) migrates from the nucleus to the cytoplasm and gets recruited in the protein complex assembling at the 3' untranslated region (UTR) of HCV RNA. At the 3' UTR, it facilitates circularization of the viral genome through interaction with another host factor, La, which is critical for replication. Also, it competes with the host protein PTB, which is a negative regulator of viral replication. Results demonstrate a unique strategy of regulation of HCV replication by a host protein through alteration of its subcellular localization and interacting partners. The study has advanced our knowledge of the molecular mechanism of HCV replication and unraveled the complex interplay between the host factors and viral RNA that could be targeted for therapeutic interventions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aims: Administration of estradiol or compounds with estrogenic activity to newborn female rats results in irreversible masculinization as well as defeminization in the brain and the animals exhibit altered reproductive behavior as adults. The cellular and molecular mechanism involved in inducing the irreversible changes is largely unknown. In the present study, we have monitored the changes in the expression of selected synaptogenesis related genes in the sexually dimorphic brain regions such as POA, hypothalamus and pituitary following 17 beta-estradiol administration to neonatal female rats. Main methods: Female Wistar rats which were administered 17 beta-estradiol on day 2 and 3 after birth were sacrificed 120 days later and the expression levels of genes implicated in synaptogenesis were monitored by semi-quantitative reverse transcription PCR. Since estradiol induced up-regulation of COX-2 in POA is a marker for estradiol induced masculinization as well as defeminization, in the present study only animals in which the increase in expression of COX-2 gene was observed in POA were included in the study. Key findings: Down-regulation of genes such as NMDA-2B, NETRIN-1, BDNF, MT-5 MMP and TNF-alpha was observed in the pre-optic area of neonatally E2 treated female rat brain but not in hypothalamus and pituitary compared to the vehicle- treated controls as assessed by RT-PCR and Western blot analysis. Significance: Our results suggest a possibility that down-regulation of genes associated with synaptogenesis in POA, may be resulting in disruption of the cyclical regulation of hormone secretion by pituitary the consequence of which could be infertility and altered reproductive behavior. (C) 2015 Elsevier Inc. All rights reserved.