992 resultados para Molar Heat-capacity


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Transient power dissipation profiles in handheld electronic devices alternate between high and low power states depending on usage. Capacitive thermal management based on phase change materials potentially offers a fan-less thermal management for such transient profiles. However, such capacitive management becomes feasible only if there is a significant enhancement in the enthalpy change per unit volume of the phase change material since existing bulk materials such as paraffin fall short of requirements. In this thesis I propose novel nanostructured thin-film materials that can potentially exhibit significantly enhanced volumetric enthalpy change. Using fundamental thermodynamics of phase transition, calculations regarding the enhancement resulting from superheating in such thin film systems is conducted. Furthermore design of a microfabricated calorimeter to measure such enhancements is explained in detail. This work advances the state-of-art of phase change materials for capacitive cooling of handheld devices.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Population growth experienced in major cities, allied to society s need of infra-structure, especially ones related to habitational demands, increases the consumption of construction materials. As a consequence, consumption of natural resources itself. Thus, due to this process, concrete is one of the most produced materials in civil construction. This is also due to the great diversity of its application, easiness in its execution and adequate mechanical performance, as well as low production costs. Following the same tendencies in construction development, the ceramic industry has intensified the production of porcelain ceramic tiles and floors. These are achieved by a fine finishing and receive polishing at the end of the fabrication process. This work researched the use of porcelain residues in polishing for the production of concrete. All of which; due to economical and environmental issues. This process aims to prove adequate destiny for this type of residue, due to environmental issues, incorporating it to the concrete itself; all of which provides economy in consumption of the materials that constitute concrete. Thus, the main characteristics of concrete were investigated through the inclusion of different concentration of the porcelain residue as additional trait element. The residue rates incorporated to the trait varied from 10% to 50% in relation to the cement mass, in the traits with plastic additives and without plastic additives. It is observed that the inclusion of porcelain residue produced a meaningful alteration in the consistency of fresh concrete. This residue has a fine granulometry and it considerably absorbed the water used in the concrete spreading, influencing the way this material is dealt with. Thus, the value of cement striking decreases with the increase of residues present in trait. The maximal incorporation of the residue was of 50%, massively, for the same factor water/initial cement. The use of residues in concrete results in an 40% increase in the compression resistance. It is also proportional to residue concentration of porcelain in the trait. The microstructure was also favored once porosity and concrete absorption decreases with the use of this residue. The parameters demonstrate the quality and durability of the concrete produced with this residue. The use of porcelain residue in concrete composition has not produced meaningful thermal behavior changes. Thermal conductivity, heat capacity and thermal diffusivity have been maintained basically constant

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The increasing environmental global regulations have directed scientific research towards more sustainable materials, even in the field of composite materials for additive manufacturing. In this context, the presented research is devoted to the development of thermoplastic composites for FDM application with a low environmental impact, focusing on the possibility to use wastes from different industrial processes as filler for the production of composite filaments for FDM 3D printing. In particular carbon fibers recycled by pyro-gasification process of CFRP scraps were used as reinforcing agent for PLA, a biobased polymeric matrix. Since the high value of CFs, the ability to re-use recycled CFs, replacing virgin ones, seems to be a promising option in terms of sustainability and circular economy. Moreover, wastes from different agricultural industries, i.e. wheat and rice production processes, were valorised and used as biofillers for the production of PLA-biocomposites. The integration of these agricultural wastes into PLA bioplastic allowed to obtain biocomposites with improved eco-sustainability, biodegradability, lightweight, and lower cost. Finally, the study of novel composites for FDM was extended towards elastomeric nanocomposite materials, in particular TPU reinforced with graphene. The research procedure of all projects involves the optimization of production methods of composite filaments with a particular attention on the possible degradation of polymeric matrices. Then, main thermal properties of 3D printed object are evaluated by TGA, DSC characterization. Additionally, specific heat capacity (CP) and Coefficient of Linear Thermal Expansion (CLTE) measurements are useful to estimate the attitude of composites for the prevention of typical FDM issues, i.e. shrinkage and warping. Finally, the mechanical properties of 3D printed composites and their anisotropy are investigated by tensile test using distinct kinds of specimens with different printing angles with respect to the testing direction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

© 2016. Published by The Company of Biologists Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present paper describes the synthesis of molecularly imprinted polymer - poly(methacrylic acid)/silica and reports its performance feasibility with desired adsorption capacity and selectivity for cholesterol extraction. Two imprinted hybrid materials were synthesized at different methacrylic acid (MAA)/tetraethoxysilane (TEOS) molar ratios (6:1 and 1:5) and characterized by FT-IR, TGA, SEM and textural data. Cholesterol adsorption on hybrid materials took place preferably in apolar solvent medium, especially in chloroform. From the kinetic data, the equilibrium time was reached quickly, being 12 and 20 min for the polymers synthesized at MAA/TEOS molar ratio of 6:1 and 1:5, respectively. The pseudo-second-order model provided the best fit for cholesterol adsorption on polymers, confirming the chemical nature of the adsorption process, while the dual-site Langmuir-Freundlich equation presented the best fit to the experimental data, suggesting the existence of two kinds of adsorption sites on both polymers. The maximum adsorption capacities obtained for the polymers synthesized at MAA/TEOS molar ratios of 6:1 and 1:5 were found to be 214.8 and 166.4 mg g(-1), respectively. The results from isotherm data also indicated higher adsorption capacity for both imprinted polymers regarding to corresponding non-imprinted polymers. Nevertheless, taking into account the retention parameters and selectivity of cholesterol in the presence of structurally analogue compounds (5-α-cholestane and 7-dehydrocholesterol), it was observed that the polymer synthesized at the MAA/TEOS molar ratio of 6:1 was much more selective for cholesterol than the one prepared at the ratio of 1:5, thus suggesting that selective binding sites ascribed to the carboxyl group from MAA play a central role in the imprinting effect created on MIP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective was to determine whether aging of sperm caused by incubation at normothermic (38.5 C) or heat shock (40 C) temperatures for 4 h prior to oocyte insemination affects sperm motility, fertilizing ability, competence of the resultant embryo to develop to the blastocyst stage and blastocyst sex ratio. In the first experiment, the percent of sperm that were motile was reduced by aging (P<0.001) and the reduction in motility was greater for sperm at 40 C compared to sperm at 38.5 C (P<0.01). In the second experiment, oocytes were inseminated with aged sperm. A smaller percent of oocytes fertilized with sperm aged at either temperature cleaved by Day 3 after insemination than oocytes fertilized with fresh sperm (P<0.05). There was no effect of sperm aging on the percent of oocytes or cleaved embryos that developed to the blastocyst stage. Aging of sperm before fertilization at 38.5 C reduced the percent of blastocysts that were male (P=0.08). In the third experiment, incubation of sperm at 38.5 C or 40 C for 4 h did not reduce fertilizing ability of sperm as determined by pronuclear formation at 18 h post insemination. In conclusion, aging of sperm reduced cleavage rate and the percent of blastocysts that were males but had no effect on the developmental capacity of the. embryo. The effect of aging on cleavage rate may represent reduced motility and errors occurring after fertilization and pronuclear formation. Aging at a temperature characteristic of maternal hyperthermia had little additional effect except that polyspermy was reduced. Results indicate that embryo competence for development to the blastocyst stage is independent of sperm damage as a result of aging for 4 h at normothermic or hyperthermic temperatures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: The purpose of this study was to evaluate the ablation capacity of different energies and pulse repetition rates of Er:YAG laser energy on primary molar enamel, by assessing mass loss and by analyzing the surface morphology with scanning electron microscopy. Background Data: Previous studies have demonstrated the capacity of the Er:YAG laser to ablate enamel substrate. Methods: Forty-two sound primary molars were bisected in a mesiodistal direction. The enamel surfaces were flattened and their initial mass (in milligrams) was obtained. An area of 4 mm(2) was delimited. The specimens were randomly assigned to 12 groups according to the combination of energy (160, 200, 250, and 300 mJ) and pulse repetition rate (2, 3, and 4 Hz). Er: YAG laser irradiation was performed on each specimen for 20 sec. After irradiation, the final mass was obtained and specimens were prepared for examination with scanning electron microscopy. The data obtained by subtracting the final mass from the initial mass were statistically analyzed using ANOVA and the Tukey test (p < 0.05). Results: The pulse repetition rate of 4 Hz provided greater mass loss, different from that seen with 2 Hz, and similar to that seen with 3 Hz. The energy level of 300 mJ resulted in greater mass loss, similar to that seen with 200 and 250 mJ. Scanning electron photomicrographs showed that there was non-selective enamel removal, with fused and cracked areas in all specimens. Conclusion: The parameters of 200 mJ and 2 Hz produced a good ablation rate with fewer surface alterations in primary molar enamel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The combined-cycle gas and steam turbine power plant presents three main pieces of equipment: gas turbines, steam turbines and heat recovery steam generator (HRSG). In case of HRSG failure the steam cycle is shut down, reducing the power plant output. Considering that the technology for design, construction and operation of high capacity HRSGs is quite recent its availability should be carefully evaluated in order to foresee the performance of the power plant. This study presents a method for reliability and availability evaluation of HRSGs installed in combined-cycle power plant. The method`s first step consists in the elaboration of the steam generator functional tree and development of failure mode and effects analysis. The next step involves a reliability and availability analysis based on the time to failure and time to repair data recorded during the steam generator operation. The third step, aiming at availability improvement, recommends the fault-tree analysis development to identify components the failure (or combination of failures) of which can cause the HRSG shutdown. Those components maintenance policy can be improved through the use of reliability centered maintenance (RCM) concepts. The method is applied on the analysis of two HRSGs installed in a 500 MW combined-cycle power plant. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The heat sensitivity of photochemical processes was evaluated in the common bean (Phaseolus vulgaris) cultivars A222, A320, and Carioca grown under well-watered conditions during the entire plant cycle (control treatment) or subjected to a temporal moderate water deficit at the preflowering stage (PWD). The responses of chlorophyll fluorescence to temperature were evaluated in leaf discs excised from control and PWD plants seven days after the complete recovery of plant shoot hydration. Heat treatment was done in the dark (5 min) at the ambient CO2 concentration. Chlorophyll fluorescence was assessed under both dark and light conditions at 25, 35, and 45 degrees C. In the dark, a decline of the potential quantum efficiency of photosystem II (PSII) and an increase in minimum chlorophyll fluorescence were observed in all genotypes at 45 degrees C, but these responses were affected by PWD. In the light, the apparent electron transport rate and the effective quantum efficiency of PSII were reduced by heat stress (45 degrees C), but no change due to PWD was demonstrated. Interestingly, only the A222 cultivar subjected to PWD showed a significant increase in nonphotochemical fluorescence quenching at 45 degrees C. The common bean cultivars had different photochemical sensitivities to heat stress altered by a previous water deficit period. Increased thermal tolerance due to PWD was genotype-dependent and associated with an increase in potential quantum efficiency of PSII at high temperature. Under such conditions, the genotype responsive to PWD treatment enhanced its protective capacity against excessive light energy via increased nonphotochemical quenching.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to deter-mine maximum bite force in molar and incisor regions in young Brazilian indigenous individuals, who have had a natural diet since birth, and compare the sample with white Brazilian individuals. To do this, individuals were paired one-to-one (same weight, height, and Class I facial pattern). A secondary purpose was to elucidate the relation between bite force and gender in both populations. Eighty-two Brazilians took part in this study. Participants were aged between 18 and 28 years and were divided into two groups: 41 Xingu indigenous individuals and 41 white Brazilian individuals, with 28 men and 13 women in each group. The inclusion criteria were: having complete dentition; normal occlusion; no neurological, psychiatric or movement disorders.; no reports of toothaches; having satisfactory periodontal health; absence of large facial skeletal alterations (typical Class II and Class III individuals); and no previous treatments using occlusal splints. To measure maximum bite force, a digital dynamometer model IDDK (Kratos-Equipamentos Industriais Ltda, Cotia, Sao Paulo, Brazil) was used, with a capacity of 1000 N, adapted for oral conditions. Assessments were made in the first molar (right and left) and central incisive regions. Results reveal that mean maximum bite forces in indigenous individuals of the right molar is 421 N, left molar 429 N and incisor region is 194 14 and for white individuals of the right molar is 410 N, left molar 422 N and incisor region is 117 N. Comparing indigenous with white individuals, maximal bite force showed a tendency of being greater in the indigenous group. It was observed that the incisor region showed statistical significance (p < 0.0005) but no significance was observed in the molar region. Moreover, indigenous men showed the highest bite force values. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heat-shock proteins (HSPs) are currently one of the most promising targets for the development of immunotherapy against tumours and autoimmune disorders. This protein family has the capacity to activate or modulate the function of different immune system cells. They induce the activation of monocytes, macrophages and dendritic cells, and contribute to cross-priming, an important mechanism of presentation of exogenous antigen in the context of MHC class I molecules, These various immunological properties of HSP have encouraged their use in several clinical trials. Nevertheless, an important issue regarding these proteins is whether the high homology among HSPs across different species may trigger the breakdown of immune tolerance and induce autoimmune diseases. We have developed a DNA vaccine codifying the Mycobacterium leprae Hsp65 (DNAhsp65), which showed to be highly immunogenic and protective against experimental tuberculosis. Here, we address the question of whether DNAhsp65 immunization could induce pathological autoimmunity in mice. Our results show that DNAhsp65 vaccination induced antibodies that can recognize the human Hsp60 but did not induce harmful effects in 16 different organs analysed by histopathology up to 210 days after vaccination. We also showed that anti-DNA antibodies were not elicited after DNA vaccination. The results are important for the development of both HSP and DNA-based immunomodulatory agents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Fibroblasts are the most abundant cells in dental pulp. To investigate their capacity to produce the chemokines CCL3, CXCL8, and CXCL12 as well as nitric oxide (NO), we evaluated the production of these mediators in supernatants of cultured human dental pulp fibroblasts (HDPF) stimulated by heat-killed Enterococcus faecalis (HKEF). Methods: Primary cultures of HDPF were stimulated with medium alone or HKEF (1:1, 10:1, or 100:1 bacteria:fibroblast) for 1, 6, and 24 hours. Chemokines and NO were assessed through enzyme-linked immunosorbent assay and Griess reaction, respectively. Statistical analysis was performed by using analysis of variance and Tukey post test. Results: CCL3 was not detected, whereas constitutive CXCL8 was not affected. Production of CXCL12 was increased at 1 and 6 hours, and NO was increased at the concentration of 1:1 bacteria:fibroblast at 24 hours. Viability and proliferation assays did not reveal cell number differences. Conclusions: These findings demonstrate that heat-killed E. faecalis is able to increase production of CXCL12 and NO by HDPF. (J Endod 2010;36:91-94)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ageing results in a progressive, intrinsic and generalised imbalance of the control of regulatory systems. A key manifestation of this complex biological process includes the attenuation of the universal stress response. Here we provide the first global assessment of the ageing process as it affects the heat shock response, utilising human peripheral lymphocytes and cDNA microarray analysis. The genomic approach employed in our preliminary study was supplemented with a proteomic approach. In addition, the current study correlates the in vivo total antioxidant status with the age-related differential gene expression as well as the translational kinetics of heat shock proteins (hsps). Most of the genes encoding stress response proteins on the 4224 element microarray used in this study were significantly elevated after heat shock treatment of lymphocytes obtained from both young and old individuals albeit to a greater extent in the young. Cell signaling and signal transduction genes as well as some oxidoreductases showed varied response. Results from translational kinetics of induction of major hsps, from 0 to 24 It recovery period were broadly consistent with the differential expression of HSC 70 and HSP 40 genes. Total antioxidant levels in plasma from old individuals were found to be significantly lower by comparison with young, in agreement with the widely acknowledged role of oxidant homeostasis in the ageing process. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calf serum and fetal bovine serum present great variability as to its growth promoting efficiency (GPE). As supplement of culture media to cultivate cells of animal origin they stimulate the "in vitro" multiplication and maintain cell viability. When fourteen lots of calf sera of variable GPE had the total protein contents as well as the percentages of serum fractions determined, no significant differences that could possibly explain the variability of the GPE were observed. Evaluation of the antiproteolytic activity of nineteen lots of calf serum and eighteen serum lots of younger calves showed that the former exhibited lower antiproteolytic titers (1:40 to 1:80) than the latter (1:80 to 1:160). Twelve lots of fetal bovine serum studied in parallel, showed the highest concentration of antiproteolytic factors, with titers equal to 1:320. Sera of bovine origin, but not fetal sera, are usually heat-inactivated, what was demonstrated to be responsible for the decrease of the antiproteolytic activity of 75% of the lots tested. This could explain the inability of certain heat-inactivated sera in promoting multiplication of some cells "in vitro", as verified with primary monkey kidney cells. The results obtained in this study indicated the convenience of submiting each lot of serum to be introduced in cell culture to previous determination of its characteristics, such as growth promoting efficiency, antiproteolytic activity and also toxicity, absence of extraneous agents, etc., in order to minimize the possibility of using serum lots of questionable quality, thus preventing not only the loss of cell lines, but also undesirable and sometimes expensive delays.