889 resultados para Moderate-intensity
Resumo:
Pós-graduação em Fisioterapia - FCT
Resumo:
Introduction: Sedentary behavior is characterized by individuals who designed much of the day sitting or lying down activities, even if such conduct regular physical activity. Over the years people tend to be less active, worsening the quality of life. For healthy aging is necessary for the individual to be constantly active, and moving activities improve mood and quality of life, though little is known of the influence of sedentary behavior in these variables. Aim: To investigate the association between sedentary time, quality of life and mood states of elderly women engaged in physical activity. Methodology: The study included 68 elderly women who belong to the Physical Activity Program for the Elderly (PROFIT), for at least 6 months. These answered the Sedentary Behaviour Questionnaire, the Pentacle Welfare and IPAQ Short Version. The Pep States List Reduced and Illustrated (LEA-RI) was applied before and after a workout and before and after three times of sedentary behaviors. To evaluate the difference of sedentary behavior time average for each domain of quality of life was conducted the analysis of the 95% confidence interval for the STATA program version 12.0 and to the moods list data a non-parametric test - test binomial using SPSS version 17.0 program and has adopted a p≤0,05. Results: A moderate intensity physical activity was the most practiced (939.5 ± 650.2 min / week) and the activity most frequently performed in sedentary time was watching television (187.6 ± 96,4min / day). In general, the quality of life for the elderly is considered good (98.39%) and the disease is most prevalent hypertension (29.47%). After a physical activity older felt less useless, less shy and less fear and after a sedentary behavior, felt less agitated and less useless. In relation between the domains of QOL and sedentary behavior time, there were no statistical differences. Conclusion: Elderly active even after a sedentary behavior...
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Efeito do treinamento físico aeróbio na reatividade vascular da artéria ilíaca em camundongos LDL-/-
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Background: Heart failure (HF) is known to lead to skeletal muscle atrophy and dysfunction. However, intracellular mechanisms underlying HF-induced myopathy are not fully understood. We hypothesized that HF would increase oxidative stress and ubiquitin-proteasome system (UPS) activation in skeletal muscle of sympathetic hyperactivity mouse model. We also tested the hypothesis that aerobic exercise training (AET) would reestablish UPS activation in mice and human HF. Methods/Principal Findings: Time-course evaluation of plantaris muscle cross-sectional area, lipid hydroperoxidation, protein carbonylation and chymotrypsin-like proteasome activity was performed in a mouse model of sympathetic hyperactivity-induced HF. At the 7th month of age, HF mice displayed skeletal muscle atrophy, increased oxidative stress and UPS overactivation. Moderate-intensity AET restored lipid hydroperoxides and carbonylated protein levels paralleled by reduced E3 ligases mRNA levels, and reestablished chymotrypsin-like proteasome activity and plantaris trophicity. In human HF (patients randomized to sedentary or moderate-intensity AET protocol), skeletal muscle chymotrypsin-like proteasome activity was also increased and AET restored it to healthy control subjects' levels. Conclusions: Collectively, our data provide evidence that AET effectively counteracts redox imbalance and UPS overactivation, preventing skeletal myopathy and exercise intolerance in sympathetic hyperactivity-induced HF in mice. Of particular interest, AET attenuates skeletal muscle proteasome activity paralleled by improved aerobic capacity in HF patients, which is not achieved by drug treatment itself. Altogether these findings strengthen the clinical relevance of AET in the treatment of HF.
Resumo:
Moraes, MR, Bacurau, RFP, Casarini, DE, Jara, ZP, Ronchi, FA, Almeida, SS, Higa, EMS, Pudo, MA, Rosa, TS, Haro, AS, Barros, CC, Pesquero, JB, Wurtele, M, and Araujo, RC. Chronic conventional resistance exercise reduces blood pressure in stage 1 hypertensive men. J Strength Cond Res 26(4): 1122-1129, 2012-To investigate the antihypertensive effects of conventional resistance exercise (RE) on the blood pressure (BP) of hypertensive subjects, 15 middle-aged (46 +/- 3 years) hypertensive volunteers, deprived of antihypertensive medication (reaching 153 +/- 6/93 +/- 2 mmHg systolic/diastolic BP after a 6-week medication washout period) were submitted to a 12-week conventional RE training program (3 sets of 12 repetitions at 60% 1 repetition maximum, 3 times a week on nonconsecutive days). Blood pressure was measured in all phases of the study (washout, training, detraining). Additionally, the plasma levels of several vasodilators or vasoconstrictors that potentially could be involved with the effects of RE on BP were evaluated pre- and posttraining. Conventional RE significantly reduced systolic, diastolic, and mean BP, respectively, by an average of 16 (p < 0.001), 12 (p < 0.01), and 13 mm Hg (p < 0.01) to prehypertensive values. There were no significant changes of vasoactive factors from the kallikrein-kinin or renin-angiotensin systems. After the RE training program, the BP values remained stable during a 4-week detraining period. Taken together, this study shows for the first time that conventional moderate-intensity RE alone is able to reduce the BP of stage 1 hypertensive subjects free of antihypertensive medication. Moreover, the benefits of BP reduction achieved with RE training remained unchanged for up to 4 weeks without exercise.
Resumo:
Cure rates of youth with Acute Lymphoblastic Leukemia (ALL) have increased in the past decades, but survivor's quality of life and physical fitness has become a growing concern. Although previous reports showed that resistance training is feasible and effective, we hypothesized that a more intense exercise program would also be feasible, but more beneficial than low- to moderate-intensity training programs. We aimed to examine the effects of an exercise program combining high-intensity resistance exercises and moderate-intensity aerobic exercises in young patients undergoing treatment for ALL. A quasi-experimental study was conducted. The patients (n = 6; 5-16 years of age) underwent a 12-week intra-hospital training program involving high-intensity strength exercises and aerobic exercise at 70% of the peak oxygen consumption. At baseline and after 12 weeks, we assessed sub-maximal strength (10 repetition-maximum), quality of life and possible adverse effects. A significant improvement was observed in the sub maximal strength for bench press (71%), lat pull down (50%), leg press (73%) and leg extension (64%) as a result of the training (p < 0.01). The parents' evaluations of their children's quality of life revealed an improvement in fatigue and general quality of life, but the children's self-reported quality of life was not changed. No adverse effects occurred. A 12-week in-hospital training program including high-intensity resistance exercises promotes marked strength improvements in patients during the maintenance phase of the treatment for Acute Lymphoblastic Leukemia without side-effects. Parents' evaluations of their children revealed an improvement in the quality of life.
Resumo:
Bearing in mind that cancer cachexia is associated with chronic systemic inflammation and that endurance training has been adopted as a nonpharmacological anti-inflammatory strategy, we examined the effect of 8 weeks of moderate intensity exercise upon the balance of anti-and pro-inflammatory cytokines in 2 different depots of white adipose tissue in cachectic tumour-bearing (Walker-256 carcinosarcoma) rats. Animals were assigned to a sedentary control (SC), sedentary tumour-bearing (ST), sedentary pair-fed (SPF) or exercise control (EC), exercise tumour-bearing (ET), and exercise pair-fed (EPF) group. Trained rats ran on a treadmill (60% VO(2)max) 60 min/day, 5 days/week, for 8 weeks. The retroperitoneal (RPAT) and mesenteric (MEAT) adipose pads were excised and the mRNA (RT-PCR) and protein (ELISA) expression of IL-1 beta, IL-6, TNF-alpha, and IL-10 were evaluated. The number of infiltrating monocytes in the adipose tissue was increased in cachectic rats. TNF-alpha mRNA in MEAT was increased in the cachectic animals (p < 0.05) in relation to SC. RPAT protein expression of all studied cytokines was increased in cachectic animals in relation to SC and SPF (p < 0.05). In this pad, IL-10/TNF-alpha ratio was reduced in the cachectic animals in comparison with SC (p < 0.05) indicating inflammation. Exercise training improved IL-10/TNF-alpha ratio and induced a reduction of the infiltrating monocytes both in MEAT and RPAT (p < 0.05), when compared with ST. We conclude that cachexia is associated with inflammation of white adipose tissue and that exercise training prevents this effect in the MEAT, and partially in RPAT.
Resumo:
It has recently been suggested that regular exercise reduces lung function decline and risk of chronic obstructive pulmonary disease (COPD) among active smokers; however, the mechanisms involved in this effect remain poorly understood. The present study evaluated the effects of regular exercise training in an experimental mouse model of chronic cigarette smoke exposure. Male C57BL/6 mice were divided into four groups (control, exercise, smoke and smoke+exercise). For 24 weeks, we measured respiratory mechanics, mean linear intercept, inflammatory cells and reactive oxygen species (ROS) in bronchoalveolar lavage (BAL) fluid, collagen deposition in alveolar walls, and the expression of antioxidant enzymes, matrix metalloproteinase 9, tissue inhibitor of metalloproteinase (TIMP) 1, interleukin (IL)-10 and 8-isoprostane in alveolar walls. Exercise attenuated the decrease in pulmonary elastance (p<0.01) and the increase in mean linear intercept (p=0.003) induced by cigarette smoke exposure. Exercise substantially inhibited the increase in ROS in BAL fluid and 8-isoprostane expression in lung tissue induced by cigarette smoke. In addition, exercise significantly inhibited the decreases in IL-10, TIMP1 and CuZn superoxide dismutase induced by exposure to cigarette smoke. Exercise also increased the number of cells expressing glutathione peroxidase. Our results suggest that regular aerobic physical training of moderate intensity attenuates the development of pulmonary disease induced by cigarette smoke exposure.
Resumo:
Post-exercise hypotension (PEH), the reduction of blood pressure (BP) after a single bout of exercise, is of great clinical relevance. As the magnitude of this phenomenon seems to be dependent on pre-exercise BP values and chronic exercise training in hypertensive individuals leads to BP reduction; PEH could be attenuated in this context. Therefore, the aim of the present study was to investigate whether PEH remains constant after resistance exercise training. Fifteen hypertensive individuals (46 +/- 8 years; 88 +/- 16 kg; 30 +/- 6% body fat; 150 +/- 13/93 +/- 5mm Hg systolic/diastolic BP, SBP/DBP) were withdrawn from medication and performed 12 weeks of moderate-intensity resistance training. Parameters of cardiovascular function were evaluated before and after the training period. Before the training program, hypertensive volunteers showed significant PEH. After an acute moderate-intensity resistance exercise session with three sets of 12 repetitions (60% of one repetition maximum) and a total of seven exercises, BP was reduced post-exercise (45-60 min) by an average of aproximately -22mm Hg for SBP, -8mm Hg for DBP and -13 mm Hg for mean arterial pressure (P<0.05). However, this acute hypotensive effect did not occur after the 12 weeks of training (P>0.05). In conclusion, our data demonstrate that PEH, following an acute exercise session, can indeed be attenuated after 12 weeks of training in hypertensive stage 1 patients not using antihypertensive medication. Journal of Human Hypertension (2012) 26, 533-539; doi:10.1038/jhh.2011.67; published online 7 July 2011
Resumo:
Abstract Background Evidences have showed that the incidence of arterial hypertension is greater in postmenopausal women as compared to premenopausal. Physical inactivity has been implicated as a major contributor to weight gain and abdominal obesity in postmenopausal women and the incidence of cardiovascular disease increases dramatically after menopause. Additionally, more women than men die each year of coronary heart disease and are twice as likely as men to die within the first year after a heart attack. A healthy lifestyle has been strongly associated with the regular physical activity and evidences have shown that physically active subjects have more longevity with reduction of morbidity and mortality. Nitric oxide (NO) produced by endothelial cells has been implicated in this beneficial effect with improvement of vascular relaxing and reduction in blood pressure in both laboratory animals and human. Although the effect of exercise training in the human cardiovascular system has been largely studied, the majority of these studies were predominantly conducted in men or young volunteers. Therefore, the aim of this work was to investigate the effects of 6 months of dynamic exercise training (ET) on blood pressure and plasma nitrate/nitrite concentration (NOx-) in hypertensive postmenopausal women. Methods Eleven volunteers were submitted to the ET consisting in 3 days a week, each session of 60 minutes during 6 months at moderate intensity (50% of heart rate reserve). Anthropometric parameters, blood pressure, NOx- concentration were measured at initial time and after ET. Results A significant reduction in both systolic and diastolic blood pressure values was seen after ET which was accompanied by markedly increase of NOx- levels (basal: 10 ± 0.9; ET: 16 ± 2 μM). Total cholesterol was significantly reduced (basal: 220 ± 38 and ET: 178 ± 22 mg/dl), whereas triglycerides levels were not modified after ET (basal: 141 ± 89 and ET: 147 ± 8 mg/dl). Conclusion Our study shows that changing in lifestyle promotes reduction of arterial pressure which was accompanied by increase in nitrite/nitrate concentration. Therefore, 6-months of exercise training are an important approach in management arterial hypertension and play a protective effect in postmenopausal women.
Resumo:
Abstract We aimed to investigate the effects of creatine (Cr) supplementation on the plasma lipid profile in sedentary male subjects undergoing aerobic training. Methods Subjects (n = 22) were randomly divided into two groups and were allocated to receive treatment with either creatine monohydrate (CR) (~20 g·day-1 for one week followed by ~10 g·day-1 for a further eleven weeks) or placebo (PL) (dextrose) in a double blind fashion. All subjects undertook moderate intensity aerobic training during three 40-minute sessions per week, over 3 months. High-density lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL), very low-density lipoprotein cholesterol (VLDL), total cholesterol (TC), triglyceride (TAG), fasting insulin and fasting glycemia were analyzed in plasma. Thereafter, the homeostasis model assessment (HOMA) was calculated. Tests were performed at baseline (Pre) and after four (Post 4), eight (Post 8) and twelve (Post 12) weeks. Results We observed main time effects in both groups for HDL (Post 4 versus Post 8; P = 0.01), TAG and VLDL (Pre versus Post 4 and Post 8; P = 0.02 and P = 0.01, respectively). However, no between group differences were noted in HDL, LDL, CT, VLDL and TAG. Additionally, fasting insulin, fasting glycemia and HOMA did not change significantly. Conclusion These findings suggest that Cr supplementation does not exert any additional effect on the improvement in the plasma lipid profile than aerobic training alone.
Resumo:
Abstract Introduction Exercise training has emerged as a promising therapeutic strategy to counteract physical dysfunction in adult systemic lupus erythematosus. However, no longitudinal studies have evaluated the effects of an exercise training program in childhood-onset systemic lupus erythematosus (C-SLE) patients. The objective was to evaluate the safety and the efficacy of a supervised aerobic training program in improving the cardiorespiratory capacity in C-SLE patients. Methods Nineteen physically inactive C-SLE patients were randomly assigned into two groups: trained (TR, n = 10, supervised moderate-intensity aerobic exercise program) and non-trained (NT, n = 9). Gender-, body mass index (BMI)- and age-matched healthy children were recruited as controls (C, n = 10) for baseline (PRE) measurements only. C-SLE patients were assessed at PRE and after 12 weeks of training (POST). Main measurements included exercise tolerance and cardiorespiratory measurements in response to a maximal exercise (that is, peak VO2, chronotropic reserve (CR), and the heart rate recovery (ΔHRR) (that is, the difference between HR at peak exercise and at both the first (ΔHRR1) and second (ΔHRR2) minutes of recovery after exercise). Results The C-SLE NT patients did not present changes in any of the cardiorespiratory parameters at POST (P > 0.05). In contrast, the exercise training program was effective in promoting significant increases in time-to-exhaustion (P = 0.01; ES = 1.07), peak speed (P = 0.01; ES = 1.08), peak VO2 (P = 0.04; ES = 0.86), CR (P = 0.06; ES = 0.83), and in ΔHRR1 and ΔHRR2 (P = 0.003; ES = 1.29 and P = 0.0008; ES = 1.36, respectively) in the C-SLE TR when compared with the NT group. Moreover, cardiorespiratory parameters were comparable between C-SLE TR patients and C subjects after the exercise training intervention, as evidenced by the ANOVA analysis (P > 0.05, TR vs. C). SLEDAI-2K scores remained stable throughout the study. Conclusion A 3-month aerobic exercise training was safe and capable of ameliorating the cardiorespiratory capacity and the autonomic function in C-SLE patients. Trial registration NCT01515163.
Resumo:
[EN] Several weeks of intense endurance training enhances mitochondrial biogenesis in humans. Whether a single bout of exercise alters skeletal muscle mitochondrial DNA (mtDNA) content remains unexplored. Double-stranded mtDNA, estimated by slot-blot hybridization and real time PCR and expressed as mtDNA-to-nuclear DNA ratio (mtDNA/nDNA) was obtained from the vastus lateralis muscle of healthy human subjects to investigate whether skeletal muscle mtDNA changes during fatiguing and nonfatiguing prolonged moderate intensity [2.0-2.5 h; approximately 60% maximal oxygen consumption (Vo(2 max))] and short repeated high-intensity exercise (5-8 min; approximately 110% Vo(2 max)). In control resting and light exercise (2 h; approximately 25% Vo(2 max)) studies, mtDNA/nDNA did not change. Conversely, mtDNA/nDNA declined after prolonged fatiguing exercise (0.863 +/- 0.061 vs. 1.101 +/- 0.067 at baseline; n = 14; P = 0.005), remained lower after 24 h of recovery, and was restored after 1 wk. After nonfatiguing prolonged exercise, mtDNA/nDNA tended to decline (n = 10; P = 0.083) but was reduced after three repeated high-intensity exercise bouts (0.900 +/- 0.049 vs. 1.067 +/- 0.071 at baseline; n = 7; P = 0.013). Our findings indicate that prolonged and short repeated intense exercise can lead to significant reductions in human skeletal muscle mtDNA content, which might function as a signal stimulating mitochondrial biogenesis with exercise training.
Resumo:
Background The dose–response relation between physical activity and all-cause mortality is not well defined at present. We conducted a systematic review and meta-analysis to determine the association with all-cause mortality of different domains of physical activity and of defined increases in physical activity and energy expenditure. Methods MEDLINE, Embase and the Cochrane Library were searched up to September 2010 for cohort studies examining all-cause mortality across different domains and levels of physical activity in adult general populations. We estimated combined risk ratios (RRs) associated with defined increments and recommended levels, using random-effects meta-analysis and dose–response meta-regression models. Results Data from 80 studies with 1 338 143 participants (118 121 deaths) were included. Combined RRs comparing highest with lowest activity levels were 0.65 [95% confidence interval (95% CI) 0.60–0.71] for total activity, 0.74 (95% CI 0.70–0.77) for leisure activity, 0.64 (95% CI 0.55–0.75) for activities of daily living and 0.83 (95% CI 0.71–0.97) for occupational activity. RRs per 1-h increment per week were 0.91 (95% CI 0.87–0.94) for vigorous exercise and 0.96 (95% CI 0.93–0.98) for moderate-intensity activities of daily living. RRs corresponding to 150 and 300 min/week of moderate to vigorous activity were 0.86 (95% CI 0.80–0.92) and 0.74 (95% CI 0.65–0.85), respectively. Mortality reductions were more pronounced in women. Conclusion Higher levels of total and domain-specific physical activity were associated with reduced all-cause mortality. Risk reduction per unit of time increase was largest for vigorous exercise. Moderate-intensity activities of daily living were to a lesser extent beneficial in reducing mortality.