989 resultados para Model View ViewModel
Resumo:
Superconducting and magnetically long-range ordered states were believed to be mutually exclusive phenomena. The discovery of rare-earth compounds in recent years, which exhibit both superconductivity and magnetic ordering (ferromagnetic, antiferromagnetic or sinusoidal), has led to considerable theoretical and experimental work on such systems. In the present article, we give a review of various theoretical models and important experimental results. In the theoretical sections, we start with the Abrikosov-Gorkov pair breaking theory for dilute alloys and discuss its improvement in the work of Müller-Hartmann and Zittartz. Then, in the context of magnetic superconductors, various microscopic theories that have been advanced are presented. These predict re-entrant behaviour in some systems (ferromagnetic superconductors) and coexistence regions in others (particularly antiferromagnetic superconductors). Following this, phenomenological generalized Ginzburg-Landau theories for two kinds of orders (superconducting and magnetic) are presented. A section dealing with renormalization group analysis of phase diagrams in magnetic superconductors is given. In experimental sections, the properties of each rare-earth compounds (ternary as well as some tetranery) are reviewed. These involve susceptibility, heat capacity, resistivity, upper critical field, neutron scattering and magnetic resonance measurements. The anomalous behaviour of the upper critical field of antiferromagnetic superconductors near the Néel temperature is discussed both in theory sections and experimental section for various systems.
Resumo:
Exact expressions for the response functions of kinetic Ising models are reported. These results valid for magnetisation in one dimension are based on a general formalism that yield the earlier results of Glauber and Kimball as special cases.
Resumo:
In a globally supersymmetric gauge theory with two distinct mass scales, the possible limitation on the gauge hierarchy due to the structure of the loop-corrected Higgs potential is shown to be absent. Also it has been demonstrated that the supersymmetry forces the large corrections to the two-point Greens functions of the light fields from the quadratic divergences and the logarithmic divergences with large coefficients to be zeroseparately. This would, therefore, allow a gauge hierarchy as large as desired.
Resumo:
A generalized Gierer-Meinhardt model has been used to account for the transplantation experiments in Hydra. In this model, a cross inhibition between the two organizing centres (namely, head and foot) are assumed to be the only mode of interaction in setting up a stable morphogen distribution for the pattern formation in Hydra.
Resumo:
The neutron-antineutron transition amplitude caused by an effective six fermion interaction with strength λeff is calculated within the context of the MIT Bag Model. The transition mass δm is found to have the value λeff×3×10−4(GeV6).
Resumo:
A kinetic model has been developed for the bulk polymerization of vinyl chloride using Talamini's hypothesis of two-phase polymerization and a new concept of kinetic solubility which assumes that rapidly growing polymer chains have considerably greater solubility than the thermodynamic solubility of preformed polymer molecules of the same size and so can remain in solution even under thermodynamically unfavourable conditions. It is further assumed that this kinetic solubility is a function of chain length. The model yields a rate expression consistent with the experimental data for vinyl chloride bulk polymerization and moreover is able to explain several characteristic kinetic features of this system. Application of the model rate expression to the available rate data has yielded 2.36 × 108l mol−1 sec−1 for the termination rate constant in the polymer-rich phase; as expected, this value is smaller than that reported for homogenous polymerization by a factor of 10–30.
Resumo:
A finite element model for the analysis of laminated composite cylindrical shells with through cracks is presented. The analysis takes into account anisotropic elastic behaviour, bending-extensional coupling and transverse shear deformation effects. The proposed finite element model is based on the approach of dividing a cracked configuration into triangular shaped singular elements around the crack tip with adjoining quadrilateral shaped regular elements. The parabolic isoparametric cylindrical shell elements (both singular and regular) used in this model employ independent displacement and rotation interpolation in the shell middle surface. The numerical comparisons show the evidence to the conclusion that the proposed model will yield accurate stress intensity factors from a relatively coarse mesh. Through the analysis of a pressurised fibre composite cylindrical shell with an axial crack, the effect of material orthotropy on the crack tip stress intensity factors is shown to be quite significant.
Resumo:
Increasingly, small firms with a history tied to a specific geographic location are having their survival threatened by new and innovative web-based entrants. This paper considers the plight of such firms and proposes an alternative means to reflect on how they may or may not learn about such threats. Adopting an evolutionary perspective, the construct absorptive capacity is used to highlight the deficiencies of current market orientation theory to explain the process of firm learning. The conceptual model of evolutionary potential provides a framework through which both the firm and its owner/s' abilities to learn can be taken into account.
Resumo:
A generalized isothermal effectiveness factor correlation has been proposed for catalytic reactions whose intrinsic kinetics are based on the redox model. In this correlation which is exact for asymptotic values of the Thiele parameter the effect of the parameters appearing in the model, the order of the reaction and particle geometry are incorporated in a modified form of Thiele parameter. The relationship takes the usual form: Image and predicts effectiveness factor with an error of less than 2% in a range of Thiele parameter that accommodates both the kinetic and diffusion control regimes.
Resumo:
A new automata model Mr,k, with a conceptually significant innovation in the form of multi-state alternatives at each instance, is proposed in this study. Computer simulations of the Mr,k, model in the context of feature selection in an unsupervised environment has demonstrated the superiority of the model over similar models without this multi-state-choice innovation.
Resumo:
A model for heterogeneous acetalisation of poly(vinyl alcohol) with limited solution volume is proposed based on the grain model of Sohn and Szekely. Instead of treating the heterogeneous acetalisation as purely a diffusion process, as in the Matuzawa and Ogasawara model, the present model also takes into account the chemical reaction and the physical state of the solid polymer, such as degree of swelling and porosity, and assumes segregation of the polymer phase at higher conversion into an outer fully reacted zone and an inner zone where the reaction still proceeds. The solution of the model for limited solution volume, moreover, offers a simple method of determining the kinetic parameters and diffusivity for the solid-liquid system using the easily measurable bulk solution concentration of the liquid reactant instead of conversion-distance data for the solid phase, which are considerably more difficult to obtain.
Resumo:
A model (NADH-phenazine methosulfate-O2) formally similar to pyridine nucleotide-dependent flavoprotein hydroxylases catalyzed the hydroxylation of several aromatic compounds. The hydroxylation was maximal at acid pH and was inhibited by ovine Superoxide dismutase, suggesting that perhydroxyl radicals might be intermediates in this process. The stoichiometry of the reaction indicated that a univalent reduction of oxygen was occurring. The correlation between the concentration of semiquinone and hydroxylation, and the inhibition of hydroxylation by ethanol which inhibited semiquinone oxidation, suggested the involvement of phenazine methosulfate-semiquinone. Activation of hydroxylation by Fe3+ and Cu2+ supported the contention that univalently reduced species of oxygen was involved in hydroxylation. Catalase was without effect on the hydroxylation by the model, ruling out H2O2 as an intermediate. A reaction sequence, involving a two-electron reduction of phenazine methosulfate to reduced phenazine methosulfate followed by disproportionation with phenazine methosulfate to generate the semiquinone, was proposed. The semiquinone could donate an electron to O2 to generate O2 which could be subsequently protonated to form the perhydroxyl radical.
Resumo:
A mathematical model for doped-oxide-source diffusion is proposed. In this model the concept of segregation of impurity at the silicon-silicon dioxide is used and also a constant of “rate limitation” is introduced through a chemical reaction at the interface.