907 resultados para Model Driven Architecture (MDA)
Resumo:
Software must be constantly adapted to changing requirements. The time scale, abstraction level and granularity of adaptations may vary from short-term, fine-grained adaptation to long-term, coarse-grained evolution. Fine-grained, dynamic and context-dependent adaptations can be particularly difficult to realize in long-lived, large-scale software systems. We argue that, in order to effectively and efficiently deploy such changes, adaptive applications must be built on an infrastructure that is not just model-driven, but is both model-centric and context-aware. Specifically, this means that high-level, causally-connected models of the application and the software infrastructure itself should be available at run-time, and that changes may need to be scoped to the run-time execution context. We first review the dimensions of software adaptation and evolution, and then we show how model-centric design can address the adaptation needs of a variety of applications that span these dimensions. We demonstrate through concrete examples how model-centric and context-aware designs work at the level of application interface, programming language and runtime. We then propose a research agenda for a model-centric development environment that supports dynamic software adaptation and evolution.
Resumo:
We use an automatic weather station and surface mass balance dataset spanning four melt seasons collected on Hurd Peninsula Glaciers, South Shetland Islands, to investigate the point surface energy balance, to determine the absolute and relative contribution of the various energy fluxes acting on the glacier surface and to estimate the sensitivity of melt to ambient temperature changes. Long-wave incoming radiation is the main energy source for melt, while short-wave radiation is the most important flux controlling the variation of both seasonal and daily mean surface energy balance. Short-wave and long-wave radiation fluxes do, in general, balance each other, resulting in a high correspondence between daily mean net radiation flux and available melt energy flux. We calibrate a distributed melt model driven by air temperature and an expression for the incoming short-wave radiation. The model is calibrated with the data from one of the melt seasons and validated with the data of the three remaining seasons. The model results deviate at most 140 mm w.e. from the corresponding observations using the glaciological method. The model is very sensitive to changes in ambient temperature: a 0.5 ◦ C increase results in 56 % higher melt rates.
Resumo:
Usability plays an important role to satisfy users? needs. There are many recommendations in the HCI literature on how to improve software usability. Our research focuses on such recommendations that affect the system architecture rather than just the interface. However, improving software usability in aspects that affect architecture increases the analyst?s workload and development complexity. This paper proposes a solution based on model-driven development. We propose representing functional usability mechanisms abstractly by means of conceptual primitives. The analyst will use these primitives to incorporate functional usability features at the early stages of the development process. Following the model-driven development paradigm, these features are then automatically transformed into subsequent steps of development, a practice that is hidden from the analyst.
Resumo:
Autonomous systems refer to systems capable of operating in a real world environment without any form of external control for extended periods of time. Autonomy is a desired goal for every system as it improves its performance, safety and profit. Ontologies are a way to conceptualize the knowledge of a specific domain. In this paper an ontology for the description of autonomous systems as well as for its development (engineering) is presented and applied to a process. This ontology is intended to be applied and used to generate final applications following a model driven methodology.
Resumo:
Mixed criticality systems emerges as a suitable solution for dealing with the complexity, performance and costs of future embedded and dependable systems. However, this paradigm adds additional complexity to their development. This paper proposes an approach for dealing with this scenario that relies on hardware virtualization and Model-Driven Engineering (MDE). Hardware virtualization ensures isolation between subsystems with different criticality levels. MDE is intended to bridge the gap between design issues and partitioning concerns. MDE tooling will enhance the functional models by annotating partitioning and extra-functional properties. System partitioning and subsystems allocation will be generated with a high degree of automation. System configuration will be validated for ensuring that the resources assigned to a partition are sufficient for executing the allocated software components and that time requirements are met.
Resumo:
We present a biomolecular probabilistic model driven by the action of a DNA toolbox made of a set of DNA templates and enzymes that is able to perform Bayesian inference. The model will take single-stranded DNA as input data, representing the presence or absence of a specific molecular signal (the evidence). The program logic uses different DNA templates and their relative concentration ratios to encode the prior probability of a disease and the conditional probability of a signal given the disease. When the input and program molecules interact, an enzyme-driven cascade of reactions (DNA polymerase extension, nicking and degradation) is triggered, producing a different pair of single-stranded DNA species. Once the system reaches equilibrium, the ratio between the output species will represent the application of Bayes? law: the conditional probability of the disease given the signal. In other words, a qualitative diagnosis plus a quantitative degree of belief in that diagno- sis. Thanks to the inherent amplification capability of this DNA toolbox, the resulting system will be able to to scale up (with longer cascades and thus more input signals) a Bayesian biosensor that we designed previously.
Resumo:
Software development methodologies are becoming increasingly abstract, progressing from low level assembly and implementation languages such as C and Ada, to component based approaches that can be used to assemble applications using technologies such as JavaBeans and the .NET framework. Meanwhile, model driven approaches emphasise the role of higher level models and notations, and embody a process of automatically deriving lower level representations and concrete software implementations. The relationship between data and software is also evolving. Modern data formats are becoming increasingly standardised, open and empowered in order to support a growing need to share data in both academia and industry. Many contemporary data formats, most notably those based on XML, are self-describing, able to specify valid data structure and content, and can also describe data manipulations and transformations. Furthermore, while applications of the past have made extensive use of data, the runtime behaviour of future applications may be driven by data, as demonstrated by the field of dynamic data driven application systems. The combination of empowered data formats and high level software development methodologies forms the basis of modern game development technologies, which drive software capabilities and runtime behaviour using empowered data formats describing game content. While low level libraries provide optimised runtime execution, content data is used to drive a wide variety of interactive and immersive experiences. This thesis describes the Fluid project, which combines component based software development and game development technologies in order to define novel component technologies for the description of data driven component based applications. The thesis makes explicit contributions to the fields of component based software development and visualisation of spatiotemporal scenes, and also describes potential implications for game development technologies. The thesis also proposes a number of developments in dynamic data driven application systems in order to further empower the role of data in this field.
Resumo:
The aim of our work is to present solutions and a methodical support for automated techniques and procedures in domain engineering, in particular for variability modeling. Our approach is based upon Semantic Modeling concepts, for which semantic description, representation patterns and inference mechanisms are defined. Thus, model-driven techniques enriched with semantics will allow flexibility and variability in representation means, reasoning power and the required analysis depth for the identification, interpretation and adaptation of artifact properties and qualities.
Resumo:
Traditionally, research on model-driven engineering (MDE) has mainly focused on the use of models at the design, implementation, and verification stages of development. This work has produced relatively mature techniques and tools that are currently being used in industry and academia. However, software models also have the potential to be used at runtime, to monitor and verify particular aspects of runtime behavior, and to implement self-* capabilities (e.g., adaptation technologies used in self-healing, self-managing, self-optimizing systems). A key benefit of using models at runtime is that they can provide a richer semantic base for runtime decision-making related to runtime system concerns associated with autonomic and adaptive systems. This book is one of the outcomes of the Dagstuhl Seminar 11481 on models@run.time held in November/December 2011, discussing foundations, techniques, mechanisms, state of the art, research challenges, and applications for the use of runtime models. The book comprises four research roadmaps, written by the original participants of the Dagstuhl Seminar over the course of two years following the seminar, and seven research papers from experts in the area. The roadmap papers provide insights to key features of the use of runtime models and identify the following research challenges: the need for a reference architecture, uncertainty tackled by runtime models, mechanisms for leveraging runtime models for self-adaptive software, and the use of models at runtime to address assurance for self-adaptive systems.
Resumo:
One of the reasons for using variability in the software product line (SPL) approach (see Apel et al., 2006; Figueiredo et al., 2008; Kastner et al., 2007; Mezini & Ostermann, 2004) is to delay a design decision (Svahnberg et al., 2005). Instead of deciding on what system to develop in advance, with the SPL approach a set of components and a reference architecture are specified and implemented (during domain engineering, see Czarnecki & Eisenecker, 2000) out of which individual systems are composed at a later stage (during application engineering, see Czarnecki & Eisenecker, 2000). By postponing the design decisions in such a manner, it is possible to better fit the resultant system in its intended environment, for instance, to allow selection of the system interaction mode to be made after the customers have purchased particular hardware, such as a PDA vs. a laptop. Such variability is expressed through variation points which are locations in a software-based system where choices are available for defining a specific instance of a system (Svahnberg et al., 2005). Until recently it had sufficed to postpone committing to a specific system instance till before the system runtime. However, in the recent years the use and expectations of software systems in human society has undergone significant changes.Today's software systems need to be always available, highly interactive, and able to continuously adapt according to the varying environment conditions, user characteristics and characteristics of other systems that interact with them. Such systems, called adaptive systems, are expected to be long-lived and able to undertake adaptations with little or no human intervention (Cheng et al., 2009). Therefore, the variability now needs to be present also at system runtime, which leads to the emergence of a new type of system: adaptive systems with dynamic variability.
Resumo:
Background: Understanding transcriptional regulation by genome-wide microarray studies can contribute to unravel complex relationships between genes. Attempts to standardize the annotation of microarray data include the Minimum Information About a Microarray Experiment (MIAME) recommendations, the MAGE-ML format for data interchange, and the use of controlled vocabularies or ontologies. The existing software systems for microarray data analysis implement the mentioned standards only partially and are often hard to use and extend. Integration of genomic annotation data and other sources of external knowledge using open standards is therefore a key requirement for future integrated analysis systems. Results: The EMMA 2 software has been designed to resolve shortcomings with respect to full MAGE-ML and ontology support and makes use of modern data integration techniques. We present a software system that features comprehensive data analysis functions for spotted arrays, and for the most common synthesized oligo arrays such as Agilent, Affymetrix and NimbleGen. The system is based on the full MAGE object model. Analysis functionality is based on R and Bioconductor packages and can make use of a compute cluster for distributed services. Conclusion: Our model-driven approach for automatically implementing a full MAGE object model provides high flexibility and compatibility. Data integration via SOAP-based web-services is advantageous in a distributed client-server environment as the collaborative analysis of microarray data is gaining more and more relevance in international research consortia. The adequacy of the EMMA 2 software design and implementation has been proven by its application in many distributed functional genomics projects. Its scalability makes the current architecture suited for extensions towards future transcriptomics methods based on high-throughput sequencing approaches which have much higher computational requirements than microarrays.
Resumo:
Performance and scalability of model transformations are becoming prominent topics in Model-Driven Engineering. In previous works we introduced LinTra, a platform for executing model transformations in parallel. LinTra is based on the Linda model of a coordination language and is intended to be used as a middleware where high-level model transformation languages are compiled. In this paper we present the initial results of our analyses on the scalability of out-place model-to-model transformation executions in LinTra when the models and the processing elements are distributed over a set of machines.
Resumo:
Existing parsers for textual model representation formats such as XMI and HUTN are unforgiving and fail upon even the smallest inconsistency between the structure and naming of metamodel elements and the contents of serialised models. In this paper, we demonstrate how a fuzzy parsing approach can transparently and automatically resolve a number of these inconsistencies, and how it can eventually turn XML into a human-readable and editable textual model representation format for particular classes of models.