915 resultados para Mitochondrial membranes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present entire sequences of two hymenopteran mitochondrial genomes and the major portion of three others. We combined these data with nine previously sequenced hymenopteran mitochondrial genomes. This allowed us to infer and analyze the evolution of the 67 mitochondrial gene rearrangements so far found in this order. All of these involve tRNA genes, whereas four also involve larger (protein-coding or ribosomal RNA) genes. We find that the vast majority of mitochondrial gene rearrangements are independently derived. A maximum of four of these rearrangements represent shared, derived organizations, whereas three are convergently derived. The remaining mitochondrial gene rearrangements represent new mitochondrial genome organizations. These data are consistent with the proposal that there are an enormous number of alternative mitochondrial genome organizations possible and that mitochondrial genome organization is, for the most part, selectively neutral. Nevertheless, some mitochondrial genes appear less mobile than others. Genes close to the noncoding region are generally more mobile but only marginally so. Some mitochondrial genes rearrange in a pattern consistent with the duplication/random loss model, but more mitochondrial genes move in a pattern inconsistent with this model. An increased rate of mitochondrial gene rearrangement is not tightly associated with the evolution of parasitism. Although parasitic lineages tend to have more mitochondrial gene rearrangements than nonparasitic lineages, there are exceptions (e.g., Orussus and Schlettererius). It is likely that only a small proportion of the total number of mitochondrial gene rearrangements that have occurred during the evolution of the Hymenoptera have been sampled in the present study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coleoptera is the most diverse group of insects with over 360,000 described species divided into four suborders: Adephaga, Archostemata, Myxophaga, and Polyphaga. In this study, we present six new complete mitochondrial genome (mtgenome) descriptions, including a representative of each suborder, and analyze the evolution of mtgenomes from a comparative framework using all available coleopteran mtgenomes. We propose a modification of atypical cox1 start codons based on sequence alignment to better reflect the conservation observed across species as well as findings of TTG start codons in other genes. We also analyze tRNA-Ser(AGN) anticodons, usually GCU in arthropods, and report a conserved UCU anticodon as a possible synapomorphy across Polyphaga. We further analyze the secondary structure of tRNA-Ser(AGN) and present a consensus structure and an updated covariance model that allows tRNAscan-SE (via the COVE software package) to locate and fold these atypical tRNAs with much greater consistency. We also report secondary structure predictions for both rRNA genes based on conserved stems. All six species of beetle have the same gene order as the ancestral insect. We report noncoding DNA regions, including a small gap region of about 20 bp between tRNA-Ser(UCN) and nad1 that is present in all six genomes, and present results of a base composition analysis.