921 resultados para Minor planets, asteroids: individual: (2) Pallas
Resumo:
For understanding the major- and minor-groove hydration patterns of DNAs and RNAs, it is important to understand the local solvation of individual nucleobases at the molecular level. We have investigated the 2-aminopurine center dot H2O. monohydrate by two-color resonant two-photon ionization and UV/UV hole-burning spectroscopies, which reveal two isomers, denoted A and B. The electronic spectral shift delta nu of the S-1 <- S-0 transition relative to bare 9H-2-aminopurine (9H-2AP) is small for isomer A (-70 cm(-1)), while that of isomer B is much larger (delta nu = 889 cm(-1)). B3LYP geometry optimizations with the TZVP basis set predict four cluster isomers, of which three are doubly H-bonded, with H2O acting as an acceptor to a N-H or -NH2 group and as a donor to either of the pyrimidine N sites. The "sugar-edge" isomer A is calculated to be the most stable form with binding energy D-e = 56.4 kJ/mol. Isomers B and C are H-bonded between the -NH2 group and pyrimidine moieties and are 2.5 and 6.9 kJ/mol less stable, respectively. Time-dependent (TD) B3LYP/TZVP calculations predict the adiabatic energies of the lowest (1)pi pi* states of A and B in excellent agreement with the observed 0(0)(0) bands; also, the relative intensities of the A and B origin bands agree well with the calculated S-0 state relative energies. This allows unequivocal identification of the isomers. The R2PI spectra of 9H-2AP and of isomer A exhibit intense low-frequency out-of-plane overtone and combination bands, which is interpreted as a coupling of the optically excited (1)pi pi* state to the lower-lying (1)n pi* dark state. In contrast, these overtone and combination bands are much weaker for isomer B, implying that the (1)pi pi* state of B is planar and decoupled from the (1)n pi* state. These observations agree with the calculations, which predict the (1)n pi* above the (1)pi pi* state for isomer B but below the (1)pi pi* for both 9H-2AP and isomer A.
Resumo:
The protozoan parasite Tritrichomonas foetus is well known as an important causative agent of infertility and abortion in cattle (bovine trichomonosis). This World Organisation for Animal Health (O.I.E.) notifiable disease is thought to be under control in many countries including Switzerland. In recent studies, however, T. foetus has also been identified as an intestinal parasite that causes chronic large-bowel diarrhoea in cats. Since the feline isolates were considered indistinguishable from bovine isolates, the possibility and risk of parasite transmission from cats to cattle and vice versa has been intensively discussed in current literature. Therefore, we investigated if cat and cattle isolates are genetically distinct from each other or in fact represent identical genotypes. For this purpose, two independent genetic loci were selected that turned out to be well-suited for a PCR sequencing-based genotyping of trichomonad isolates: (i) previously published internal transcribed spacer region 2 (ITS-2) and (ii) a semi-conserved sequence stretch of the elongation factor-1 alpha (EF-1alpha) gene used for the first time in the present study. Respective comparative analyses revealed that both loci were sufficiently variable to allow unambiguous genetic discrimination between different trichomonad species. Comparison of both genetic loci confirmed that T. suis and T. mobilensis are phylogenetically very close to T. foetus. Moreover, these two genetic markers were suited to define host-specific genotypes of T. foetus. Both loci showed single base differences between cat and cattle isolates but showed full sequence identity within strains from either cat or cattle isolates. Furthermore, an additional PCR with a forward primer designed to specifically amplify the bovine sequence of EF-1alpha was able to discriminate bovine isolates of T. foetus from feline isolates and also from other trichomonads. The implications these minor genetic differences may have on the biological properties of the distinct isolates remain to be investigated.
Resumo:
10.1002/hlca.200390311.abs A series of oligonucleotides containing (5′S)-5′-C-butyl- and (5′S)-5′-C-isopentyl-substituted 2′-deoxyribonucleosides were designed, prepared, and characterized with the intention to explore alkyl-zipper formation between opposing alkyl chains across the minor groove of oligonucleotide duplexes as a means to modulate DNA-duplex stability. From four possible arrangements of the alkyl groups that differ in the density of packing of the alkyl chains across the minor groove, three (duplex types I–III, Fig. 2) could experimentally be realized and their duplex-forming properties analyzed by UV-melting curves, CD spectroscopy, and isothermal titration calorimetry (ITC), as well as by molecular modeling. The results show that all arrangements of alkyl residues within the minor groove of DNA are thermally destabilizing by 1.5–3°/modification in Tm. We found that, within the proposed duplexes with more loosely packed alkyl groups (type-III duplexes), accommodation of alkyl residues without extended distorsion of the helical parameters of B-DNA is possible but does not lead to higher thermodynamic stability. The more densely packed and more unevenly distributed arrangement (type-II duplexes) seems to suffer from ecliptic positioning of opposite alkyl groups, which might account for a systematic negative contribution to stability due to steric interactions. The decreased stability in the type-III duplexes described here may be due either to missing hydrophobic interactions of the alkyl groups (not bulky enough to make close contacts), or to an overcompensation of favorable alkyl-zipper formation presumably by loss of structured H2O in the minor groove.
Resumo:
Basalts from different structural provinces in the ocean basins, such as mid-ocean ridges, island arcs, and oceanic plateaus, show marked differences in major and minor element composition stemming from differences in magma source. In addition, there are variations even within individual provinces, based on such processes as crystal fractionation, secondary alteration, and hydrothermal alteration. It is also known that hydrothermal processes can cause changes in the gas composition of submarine basalts. For example, Zolotarev et al. (1978) have established that hydrothermal alteration frequently causes an increase in the CO2 content of basalts. If the homogeneity in composition and concentration of organic gases in oceanic basalts is associated with degassing during epimagmatic alteration, it would be interesting to investigate the relative abundance of gas phases in young basalts from midoceanic ridges. This chapter deals with the distribution of organic gases and CO2 in young basalts recovered on Leg 65 from the Gulf of California. Our aim was to establish the relationship between gas composition and degree of alteration.
Resumo:
Molecular methods provide promising tools for routine detection and quantification of toxic microalgae in plankton samples. To this end, novel TaqMan minor groove binding probes and primers targeting the small (SSU) or large (LSU) ribosomal subunit (rRNA) were developed for two species of the marine dinoflagellate genus Alexandrium (A. minutum, A. tamutum) and for three groups/ribotypes of the A. tamarense species complex: Group I/North American (NA), Group II/Mediterranean (ME) and Group III/Western European (WE). Primers and probes for real-time quantitative PCR (qPCR) were species-specific and highly efficient when tested in qPCR assays for cross-validation with pure DNA from cultured Alexandrium strains. Suitability of the qPCR assays as molecular tools for the detection and estimation of relative cell abundances of Alexandrium species and groups was evaluated from samples of natural plankton assemblages along the Scottish east coast. The results were compared with inverted microscope cell counts (Utermöhl technique) of Alexandrium spp. and associated paralytic shellfish poisoning (PSP) toxin concentrations. The qPCR assays indicated that A. tamarense (Group I) and A. tamutum were the most abundant Alexandrium taxa and both were highly positively correlated with PSP toxin content of plankton samples. Cells of A. tamarense (Group III) were present at nearly all stations but in low abundance. Alexandrium minutum and A. tamarense (Group II) cells were not detected in any of the samples, thereby arguing for their absence from the specific North Sea region, at least at the time of the survey. The sympatric occurrence of A. tamarense Group I and Group III gives further support to the hypothesis that the groups/ribotypes of the A. tamarense species complex are cryptic species rather than variants belonging to the same species.