927 resultados para Mining extraction model
Resumo:
Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação
Resumo:
We present a new method for lysis of single cells in continuous flow, where cells are sequentially trapped, lysed and released in an automatic process. Using optimized frequencies, dielectrophoretic trapping allows exposing cells in a reproducible way to high electrical fields for long durations, thereby giving good control on the lysis parameters. In situ evaluation of cytosol extraction on single cells has been studied for Chinese hamster ovary (CHO) cells through out-diffusion of fluorescent molecules for different voltage amplitudes. A diffusion model is proposed to correlate this out-diffusion to the total area of the created pores, which is dependent on the potential drop across the cell membrane and enables evaluation of the total pore area in the membrane. The dielectrophoretic trapping is no longer effective after lysis because of the reduced conductivity inside the cells, leading to cell release. The trapping time is linked to the time required for cytosol extraction and can thus provide additional validation of the effective cytosol extraction for non-fluorescent cells. Furthermore, the application of one single voltage for both trapping and lysis provides a fully automatic process including cell trapping, lysis, and release, allowing operating the device in continuous flow without human intervention.
Resumo:
Consider a model with parameter phi, and an auxiliary model with parameter theta. Let phi be a randomly sampled from a given density over the known parameter space. Monte Carlo methods can be used to draw simulated data and compute the corresponding estimate of theta, say theta_tilde. A large set of tuples (phi, theta_tilde) can be generated in this manner. Nonparametric methods may be use to fit the function E(phi|theta_tilde=a), using these tuples. It is proposed to estimate phi using the fitted E(phi|theta_tilde=theta_hat), where theta_hat is the auxiliary estimate, using the real sample data. This is a consistent and asymptotically normally distributed estimator, under certain assumptions. Monte Carlo results for dynamic panel data and vector autoregressions show that this estimator can have very attractive small sample properties. Confidence intervals can be constructed using the quantiles of the phi for which theta_tilde is close to theta_hat. Such confidence intervals are found to have very accurate coverage.
Resumo:
The present study was performed to assess the interlaboratory reproducibility of the molecular detection and identification of species of Zygomycetes from formalin-fixed paraffin-embedded kidney and brain tissues obtained from experimentally infected mice. Animals were infected with one of five species (Rhizopus oryzae, Rhizopus microsporus, Lichtheimia corymbifera, Rhizomucor pusillus, and Mucor circinelloides). Samples with 1, 10, or 30 slide cuts of the tissues were prepared from each paraffin block, the sample identities were blinded for analysis, and the samples were mailed to each of seven laboratories for the assessment of sensitivity. A protocol describing the extraction method and the PCR amplification procedure was provided. The internal transcribed spacer 1 (ITS1) region was amplified by PCR with the fungal universal primers ITS1 and ITS2 and sequenced. As negative results were obtained for 93% of the tissue specimens infected by M. circinelloides, the data for this species were excluded from the analysis. Positive PCR results were obtained for 93% (52/56), 89% (50/56), and 27% (15/56) of the samples with 30, 10, and 1 slide cuts, respectively. There were minor differences, depending on the organ tissue, fungal species, and laboratory. Correct species identification was possible for 100% (30 cuts), 98% (10 cuts), and 93% (1 cut) of the cases. With the protocol used in the present study, the interlaboratory reproducibility of ITS sequencing for the identification of major Zygomycetes species from formalin-fixed paraffin-embedded tissues can reach 100%, when enough material is available.
Resumo:
PURPOSE: In Burkina Faso, gold ore is one of the main sources of income for an important part of the active population. Artisan gold miners use mercury in the extraction, a toxic metal whose human health risks are well known. The aim of the present study was to assess mercury exposure as well as to understand the exposure determinants of gold miners in Burkinabe small-scale mines.METHODS: The examined gold miners' population on the different selected gold mining sites was composed by persons who were directly and indirectly related to gold mining activities. But measurement of urinary mercury was performed on workers most susceptible to be exposed to mercury. Thus, occupational exposure to mercury was evaluated among ninety-three workers belonging to eight different gold mining sites spread in six regions of Burkina Faso. Among others, work-related exposure determinants were taken into account for each person during urine sampling as for example amalgamating or heating mercury. All participants were medically examined by a local medical team in order to identify possible symptoms related to the toxic effect of mercury.RESULTS: Mercury levels were high, showing that 69% of the measurements exceeded the ACGIH (American Conference of Industrial Hygienists) biological exposure indice (BEI) of 35 µg per g of creatinine (µg/g-Cr) (prior to shift) while 16% even exceeded 350 µg/g-Cr. Basically, unspecific but also specific symptoms related to mercury toxicity could be underlined among the persons who were directly related to gold mining activities. Only one-third among the studied subpopulation reported about less than three symptoms possibly associated to mercury exposure and nearly half of them suffered from at least five of these symptoms. Ore washers were more involved in the direct handling of mercury while gold dealers in the final gold recovery activities. These differences may explain the overexposure observed in gold dealers and indicate that the refining process is the major source of exposure.CONCLUSIONS: This study attests that mercury exposure still is an issue of concern. North-South collaborations should encourage knowledge exchange between developing and developed countries, for a cleaner artisanal gold mining process and thus for reducing human health and environmental hazards due to mercury use.
Resumo:
The two main alternative methods used to identify key sectors within the input-output approach, the Classical Multiplier method (CMM) and the Hypothetical Extraction method (HEM), are formally and empirically compared in this paper. Our findings indicate that the main distinction between the two approaches stems from the role of the internal effects. These internal effects are quantified under the CMM while under the HEM only external impacts are considered. In our comparison, we find, however that CMM backward measures are more influenced by within-block effects than the proposed forward indices under this approach. The conclusions of this comparison allow us to develop a hybrid proposal that combines these two existing approaches. This hybrid model has the advantage of making it possible to distinguish and disaggregate external effects from those that a purely internal. This proposal has also an additional interest in terms of policy implications. Indeed, the hybrid approach may provide useful information for the design of ''second best'' stimulus policies that aim at a more balanced perspective between overall economy-wide impacts and their sectoral distribution.
Resumo:
Model predictiu basat en xarxes bayesianes que permet identificar els pacients amb major risc d'ingrés a un hospital segons una sèrie d'atributs de dades demogràfiques i clíniques.
Analysis and evaluation of techniques for the extraction of classes in the ontology learning process
Resumo:
This paper analyzes and evaluates, in the context of Ontology learning, some techniques to identify and extract candidate terms to classes of a taxonomy. Besides, this work points out some inconsistencies that may be occurring in the preprocessing of text corpus, and proposes techniques to obtain good terms candidate to classes of a taxonomy.
Resumo:
The objective of the PANACEA ICT-2007.2.2 EU project is to build a platform that automates the stages involved in the acquisition,production, updating and maintenance of the large language resources required by, among others, MT systems. The development of a Corpus Acquisition Component (CAC) for extracting monolingual and bilingual data from the web is one of the most innovative building blocks of PANACEA. The CAC, which is the first stage in the PANACEA pipeline for building Language Resources, adopts an efficient and distributed methodology to crawl for web documents with rich textual content in specific languages and predefined domains. The CAC includes modules that can acquire parallel data from sites with in-domain content available in more than one language. In order to extrinsically evaluate the CAC methodology, we have conducted several experiments that used crawled parallel corpora for the identification and extraction of parallel sentences using sentence alignment. The corpora were then successfully used for domain adaptation of Machine Translation Systems.
Resumo:
Automatic creation of polarity lexicons is a crucial issue to be solved in order to reduce time andefforts in the first steps of Sentiment Analysis. In this paper we present a methodology based onlinguistic cues that allows us to automatically discover, extract and label subjective adjectivesthat should be collected in a domain-based polarity lexicon. For this purpose, we designed abootstrapping algorithm that, from a small set of seed polar adjectives, is capable to iterativelyidentify, extract and annotate positive and negative adjectives. Additionally, the methodautomatically creates lists of highly subjective elements that change their prior polarity evenwithin the same domain. The algorithm proposed reached a precision of 97.5% for positiveadjectives and 71.4% for negative ones in the semantic orientation identification task.
Resumo:
Data mining can be defined as the extraction of previously unknown and potentially useful information from large datasets. The main principle is to devise computer programs that run through databases and automatically seek deterministic patterns. It is applied in different fields of application, e.g., remote sensing, biometry, speech recognition, but has seldom been applied to forensic case data. The intrinsic difficulty related to the use of such data lies in its heterogeneity, which comes from the many different sources of information. The aim of this study is to highlight potential uses of pattern recognition that would provide relevant results from a criminal intelligence point of view. The role of data mining within a global crime analysis methodology is to detect all types of structures in a dataset. Once filtered and interpreted, those structures can point to previously unseen criminal activities. The interpretation of patterns for intelligence purposes is the final stage of the process. It allows the researcher to validate the whole methodology and to refine each step if necessary. An application to cutting agents found in illicit drug seizures was performed. A combinatorial approach was done, using the presence and the absence of products. Methods coming from the graph theory field were used to extract patterns in data constituted by links between products and place and date of seizure. A data mining process completed using graphing techniques is called ``graph mining''. Patterns were detected that had to be interpreted and compared with preliminary knowledge to establish their relevancy. The illicit drug profiling process is actually an intelligence process that uses preliminary illicit drug classes to classify new samples. Methods proposed in this study could be used \textit{a priori} to compare structures from preliminary and post-detection patterns. This new knowledge of a repeated structure may provide valuable complementary information to profiling and become a source of intelligence.
Resumo:
Monetary policy is conducted in an environment of uncertainty. This paper sets upa model where the central bank uses real-time data from the bond market togetherwith standard macroeconomic indicators to estimate the current state of theeconomy more efficiently, while taking into account that its own actions influencewhat it observes. The timeliness of bond market data allows for quicker responsesof monetary policy to disturbances compared to the case when the central bankhas to rely solely on collected aggregate data. The information content of theterm structure creates a link between the bond market and the macroeconomythat is novel to the literature. To quantify the importance of the bond market asa source of information, the model is estimated on data for the United Statesand Australia using Bayesian methods. The empirical exercise suggests that thereis some information in the US term structure that helps the Federal Reserve toidentify shocks to the economy on a timely basis. Australian bond prices seemto be less informative than their US counterparts, perhaps because Australia is arelatively small and open economy.
Resumo:
The sandstone-hosted Beverley uranium deposit is located in terrestrial sediments in the Lake Frome basin in the North Flinders Ranges, South Australia. The deposit is 13 km from the U-rich Mesoproterozoic basement of the Mount Painter inlier, which is being uplifted 100 to 200 m above the basin by neotectonic activity that probably initiated in the early Pliocene. The mineralization was deposited mainly in organic matter-poor Miocene lacustrine sands and partly in the underlying reductive strata comprising organic matter-rich clays and silts. The bulk of the mineralization consists of coffinite and/or uraninite nodules, growing around Co-rich pyrite with an S isotope composition (delta S-34 = 1.0 +/- 0.3 parts per thousand), suggestive of an early diagenetic lacustrine origin. In contrast, authigenic sulfides in the bulk of the sediments have a negative S isotope signature (delta S-34 ranges from -26.2 to -35.5 parts per thousand), indicative of an origin via bacterially mediated sulfate reduction. Minor amounts of Zn-bearing native copper and native lead also support the presence of specific, reducing microenvironments in the ore zone. Small amounts of carnotite are associated with the coffinite ore and also occur beneath a paleosoil horizon overlying the uranium deposit. Provenance studies suggest that the host Miocene sediments were derived from the reworking of Early Cretaceous glacial or glaciolacustrine sediments ultimately derived from Paleozoic terranes in eastern Australia. In contrast, the overlying Pliocene strata were in part derived from the Mesoproterozoic basement inlier. Mass-balance and geochemical data confirm that granites of the Mount Painter domain were the ultimate source of U and BEE at Beverley. U-Pb dating of coffinite and carnotite suggest that the U mineralization is Pliocene (6.7-3.4 Ma). The suitability of the Beverley deposit for efficient mining via in situ leaching, and hence its economic value, are determined by the nature of the hosting sand unit, which provides the permeability and low reactivity required for high fluid flow and low chemical consumption. These favorable sedimentologic and geometrical features result from a complex conjunction of factors, including deposition in lacustrine shore environment, reworking of angular sands of glacial origin, deep Pliocene weathering, and proximity to an active fault exposing extremely U rich rocks.
Resumo:
La présente étude est à la fois une évaluation du processus de la mise en oeuvre et des impacts de la police de proximité dans les cinq plus grandes zones urbaines de Suisse - Bâle, Berne, Genève, Lausanne et Zurich. La police de proximité (community policing) est à la fois une philosophie et une stratégie organisationnelle qui favorise un partenariat renouvelé entre la police et les communautés locales dans le but de résoudre les problèmes relatifs à la sécurité et à l'ordre public. L'évaluation de processus a analysé des données relatives aux réformes internes de la police qui ont été obtenues par l'intermédiaire d'entretiens semi-structurés avec des administrateurs clés des cinq départements de police, ainsi que dans des documents écrits de la police et d'autres sources publiques. L'évaluation des impacts, quant à elle, s'est basée sur des variables contextuelles telles que des statistiques policières et des données de recensement, ainsi que sur des indicateurs d'impacts construit à partir des données du Swiss Crime Survey (SCS) relatives au sentiment d'insécurité, à la perception du désordre public et à la satisfaction de la population à l'égard de la police. Le SCS est un sondage régulier qui a permis d'interroger des habitants des cinq grandes zones urbaines à plusieurs reprises depuis le milieu des années 1980. L'évaluation de processus a abouti à un « Calendrier des activités » visant à créer des données de panel permettant de mesurer les progrès réalisés dans la mise en oeuvre de la police de proximité à l'aide d'une grille d'évaluation à six dimensions à des intervalles de cinq ans entre 1990 et 2010. L'évaluation des impacts, effectuée ex post facto, a utilisé un concept de recherche non-expérimental (observational design) dans le but d'analyser les impacts de différents modèles de police de proximité dans des zones comparables à travers les cinq villes étudiées. Les quartiers urbains, délimités par zone de code postal, ont ainsi été regroupés par l'intermédiaire d'une typologie réalisée à l'aide d'algorithmes d'apprentissage automatique (machine learning). Des algorithmes supervisés et non supervisés ont été utilisés sur les données à haute dimensionnalité relatives à la criminalité, à la structure socio-économique et démographique et au cadre bâti dans le but de regrouper les quartiers urbains les plus similaires dans des clusters. D'abord, les cartes auto-organisatrices (self-organizing maps) ont été utilisées dans le but de réduire la variance intra-cluster des variables contextuelles et de maximiser simultanément la variance inter-cluster des réponses au sondage. Ensuite, l'algorithme des forêts d'arbres décisionnels (random forests) a permis à la fois d'évaluer la pertinence de la typologie de quartier élaborée et de sélectionner les variables contextuelles clés afin de construire un modèle parcimonieux faisant un minimum d'erreurs de classification. Enfin, pour l'analyse des impacts, la méthode des appariements des coefficients de propension (propensity score matching) a été utilisée pour équilibrer les échantillons prétest-posttest en termes d'âge, de sexe et de niveau d'éducation des répondants au sein de chaque type de quartier ainsi identifié dans chacune des villes, avant d'effectuer un test statistique de la différence observée dans les indicateurs d'impacts. De plus, tous les résultats statistiquement significatifs ont été soumis à une analyse de sensibilité (sensitivity analysis) afin d'évaluer leur robustesse face à un biais potentiel dû à des covariables non observées. L'étude relève qu'au cours des quinze dernières années, les cinq services de police ont entamé des réformes majeures de leur organisation ainsi que de leurs stratégies opérationnelles et qu'ils ont noué des partenariats stratégiques afin de mettre en oeuvre la police de proximité. La typologie de quartier développée a abouti à une réduction de la variance intra-cluster des variables contextuelles et permet d'expliquer une partie significative de la variance inter-cluster des indicateurs d'impacts avant la mise en oeuvre du traitement. Ceci semble suggérer que les méthodes de géocomputation aident à équilibrer les covariables observées et donc à réduire les menaces relatives à la validité interne d'un concept de recherche non-expérimental. Enfin, l'analyse des impacts a révélé que le sentiment d'insécurité a diminué de manière significative pendant la période 2000-2005 dans les quartiers se trouvant à l'intérieur et autour des centres-villes de Berne et de Zurich. Ces améliorations sont assez robustes face à des biais dus à des covariables inobservées et covarient dans le temps et l'espace avec la mise en oeuvre de la police de proximité. L'hypothèse alternative envisageant que les diminutions observées dans le sentiment d'insécurité soient, partiellement, un résultat des interventions policières de proximité semble donc être aussi plausible que l'hypothèse nulle considérant l'absence absolue d'effet. Ceci, même si le concept de recherche non-expérimental mis en oeuvre ne peut pas complètement exclure la sélection et la régression à la moyenne comme explications alternatives. The current research project is both a process and impact evaluation of community policing in Switzerland's five major urban areas - Basel, Bern, Geneva, Lausanne, and Zurich. Community policing is both a philosophy and an organizational strategy that promotes a renewed partnership between the police and the community to solve problems of crime and disorder. The process evaluation data on police internal reforms were obtained through semi-structured interviews with key administrators from the five police departments as well as from police internal documents and additional public sources. The impact evaluation uses official crime records and census statistics as contextual variables as well as Swiss Crime Survey (SCS) data on fear of crime, perceptions of disorder, and public attitudes towards the police as outcome measures. The SCS is a standing survey instrument that has polled residents of the five urban areas repeatedly since the mid-1980s. The process evaluation produced a "Calendar of Action" to create panel data to measure community policing implementation progress over six evaluative dimensions in intervals of five years between 1990 and 2010. The impact evaluation, carried out ex post facto, uses an observational design that analyzes the impact of the different community policing models between matched comparison areas across the five cities. Using ZIP code districts as proxies for urban neighborhoods, geospatial data mining algorithms serve to develop a neighborhood typology in order to match the comparison areas. To this end, both unsupervised and supervised algorithms are used to analyze high-dimensional data on crime, the socio-economic and demographic structure, and the built environment in order to classify urban neighborhoods into clusters of similar type. In a first step, self-organizing maps serve as tools to develop a clustering algorithm that reduces the within-cluster variance in the contextual variables and simultaneously maximizes the between-cluster variance in survey responses. The random forests algorithm then serves to assess the appropriateness of the resulting neighborhood typology and to select the key contextual variables in order to build a parsimonious model that makes a minimum of classification errors. Finally, for the impact analysis, propensity score matching methods are used to match the survey respondents of the pretest and posttest samples on age, gender, and their level of education for each neighborhood type identified within each city, before conducting a statistical test of the observed difference in the outcome measures. Moreover, all significant results were subjected to a sensitivity analysis to assess the robustness of these findings in the face of potential bias due to some unobserved covariates. The study finds that over the last fifteen years, all five police departments have undertaken major reforms of their internal organization and operating strategies and forged strategic partnerships in order to implement community policing. The resulting neighborhood typology reduced the within-cluster variance of the contextual variables and accounted for a significant share of the between-cluster variance in the outcome measures prior to treatment, suggesting that geocomputational methods help to balance the observed covariates and hence to reduce threats to the internal validity of an observational design. Finally, the impact analysis revealed that fear of crime dropped significantly over the 2000-2005 period in the neighborhoods in and around the urban centers of Bern and Zurich. These improvements are fairly robust in the face of bias due to some unobserved covariate and covary temporally and spatially with the implementation of community policing. The alternative hypothesis that the observed reductions in fear of crime were at least in part a result of community policing interventions thus appears at least as plausible as the null hypothesis of absolutely no effect, even if the observational design cannot completely rule out selection and regression to the mean as alternative explanations.