922 resultados para Minimal Hausdor Frames
Resumo:
There is strong evidence that the transport processes in the buffer region of wall-bounded turbulence are common across various flow configurations, even in the embryonic turbulence in transition (Park et al., Phys. Fl. 24). We use this premise to develop off-wall boundary conditions for turbulent simulations. Boundary conditions are constructed from DNS databases using periodic minimal flow units and reduced order modeling. The DNS data was taken from a channel at Reτ=400 and a zero-pressure gradient transitional boundary layer (Sayadi et al., submitted to J. Fluid Mech.). Both types of boundary conditions were first tested on a DNS of the core of the channel flow with the aim of extending their application to LES and to spatially evolving flows.
Resumo:
A programmable vision chip with variable resolution and row-pixel-mixed parallel image processors is presented. The chip consists of a CMOS sensor array, with row-parallel 6-bit Algorithmic ADCs, row-parallel gray-scale image processors, pixel-parallel SIMD Processing Element (PE) array, and instruction controller. The resolution of the image in the chip is variable: high resolution for a focused area and low resolution for general view. It implements gray-scale and binary mathematical morphology algorithms in series to carry out low-level and mid-level image processing and sends out features of the image for various applications. It can perform image processing at over 1,000 frames/s (fps). A prototype chip with 64 x 64 pixels resolution and 6-bit gray-scale image is fabricated in 0.18 mu m Standard CMOS process. The area size of chip is 1.5 mm x 3.5 mm. Each pixel size is 9.5 mu m x 9.5 mu m and each processing element size is 23 mu m x 29 mu m. The experiment results demonstrate that the chip can perform low-level and mid-level image processing and it can be applied in the real-time vision applications, such as high speed target tracking.
Resumo:
In this paper we present an approach to perceptual organization and attention based on Curved Inertia Frames (C.I.F.), a novel definition of "curved axis of inertia'' tolerant to noisy and spurious data. The definition is useful because it can find frames that correspond to large, smooth, convex, symmetric and central parts. It is novel because it is global and can detect curved axes. We discuss briefly the relation to human perception, the recognition of non-rigid objects, shape description, and extensions to finding "features", inside/outside relations, and long- smooth ridges in arbitrary surfaces.
Resumo:
The inferior temporal cortex (IT) of monkeys is thought to play an essential role in visual object recognition. Inferotemporal neurons are known to respond to complex visual stimuli, including patterns like faces, hands, or other body parts. What is the role of such neurons in object recognition? The present study examines this question in combined psychophysical and electrophysiological experiments, in which monkeys learned to classify and recognize novel visual 3D objects. A population of neurons in IT were found to respond selectively to such objects that the monkeys had recently learned to recognize. A large majority of these cells discharged maximally for one view of the object, while their response fell off gradually as the object was rotated away from the neuron"s preferred view. Most neurons exhibited orientation-dependent responses also during view-plane rotations. Some neurons were found tuned around two views of the same object, while a very small number of cells responded in a view- invariant manner. For five different objects that were extensively used during the training of the animals, and for which behavioral performance became view-independent, multiple cells were found that were tuned around different views of the same object. No selective responses were ever encountered for views that the animal systematically failed to recognize. The results of our experiments suggest that neurons in this area can develop a complex receptive field organization as a consequence of extensive training in the discrimination and recognition of objects. Simple geometric features did not appear to account for the neurons" selective responses. These findings support the idea that a population of neurons -- each tuned to a different object aspect, and each showing a certain degree of invariance to image transformations -- may, as an assembly, encode complex 3D objects. In such a system, several neurons may be active for any given vantage point, with a single unit acting like a blurred template for a limited neighborhood of a single view.
Resumo:
Cox, S.J. (2006) Calculations of the minimal perimeter for N deformable cells of equal area confined in a circle. Philosophical Magazine Letters. 86:569-578.
Resumo:
P. Assun??o, N.T. Antunes, R.S. Rosales, C. Poveda, C. de la Fe, J.B. Poveda and H.M. Davey (2007). Application of flow cytometry for the determination of minimal inhibitory concentration of several antibacterial agents on Mycoplasma hyopneumoniae. Journal of Applied Microbiology, 102(4), 1132-1137. Sponsorship: Gobierno de Canarias (IDT-LP-04/016) RAE2008
Resumo:
We describe a GB parser implemented along the lines of those written by Fong [4] and Dorr [2]. The phrase structure recovery component is an implementation of Tomita's generalized LR parsing algorithm (described in [10]), with recursive control flow (similar to Fong's implementation). The major principles implemented are government, binding, bounding, trace theory, case theory, θ-theory, and barriers. The particular version of GB theory we use is that described by Haegeman [5]. The parser is minimal in the sense that it implements the major principles needed in a GB parser, and has fairly good coverage of linguistically interesting portions of the English language.
Resumo:
Quality of Service (QoS) guarantees are required by an increasing number of applications to ensure a minimal level of fidelity in the delivery of application data units through the network. Application-level QoS does not necessarily follow from any transport-level QoS guarantees regarding the delivery of the individual cells (e.g. ATM cells) which comprise the application's data units. The distinction between application-level and transport-level QoS guarantees is due primarily to the fragmentation that occurs when transmitting large application data units (e.g. IP packets, or video frames) using much smaller network cells, whereby the partial delivery of a data unit is useless; and, bandwidth spent to partially transmit the data unit is wasted. The data units transmitted by an application may vary in size while being constant in rate, which results in a variable bit rate (VBR) data flow. That data flow requires QoS guarantees. Statistical multiplexing is inadequate, because no guarantees can be made and no firewall property exists between different data flows. In this paper, we present a novel resource management paradigm for the maintenance of application-level QoS for VBR flows. Our paradigm is based on Statistical Rate Monotonic Scheduling (SRMS), in which (1) each application generates its variable-size data units at a fixed rate, (2) the partial delivery of data units is of no value to the application, and (3) the QoS guarantee extended to the application is the probability that an arbitrary data unit will be successfully transmitted through the network to/from the application.
Resumo:
Why do beliefs that attach different amounts of status to different categories of people become consensually held by the members of a society? We show that two microlevel mechanisms, in combination, imply a system-level tendency toward consensual status beliefs about a nominal characteristic. (1) Status belief diffusion: a person who has no status belief about a characteristic can acquire a status belief about that characteristic from interacting with one or more people who have that status belief. (2) Status belief loss: a person who has a status belief about a characteristic can lose that belief from interacting with one or more people who have the opposite status belief. These mechanisms imply that opposite status beliefs will tend to be lost at equal rates and will tend to be acquired at rates proportional to their prevalence. Therefore, if a status belief ever becomes more prevalent than its opposite, it will increase in prevalence until every person holds it.
Resumo:
Synthetic biology seeks to enable programmed control of cellular behavior though engineered biological systems. These systems typically consist of synthetic circuits that function inside, and interact with, complex host cells possessing pre-existing metabolic and regulatory networks. Nevertheless, while designing systems, a simple well-defined interface between the synthetic gene circuit and the host is frequently assumed. We describe the generation of robust but unexpected oscillations in the densities of bacterium Escherichia coli populations by simple synthetic suicide circuits containing quorum components and a lysis gene. Contrary to design expectations, oscillations required neither the quorum sensing genes (luxR and luxI) nor known regulatory elements in the P(luxI) promoter. Instead, oscillations were likely due to density-dependent plasmid amplification that established a population-level negative feedback. A mathematical model based on this mechanism captures the key characteristics of oscillations, and model predictions regarding perturbations to plasmid amplification were experimentally validated. Our results underscore the importance of plasmid copy number and potential impact of "hidden interactions" on the behavior of engineered gene circuits - a major challenge for standardizing biological parts. As synthetic biology grows as a discipline, increasing value may be derived from tools that enable the assessment of parts in their final context.
Resumo:
Telecentric optical computed tomography (optical-CT) is a state-of-the-art method for visualizing and quantifying 3-dimensional dose distributions in radiochromic dosimeters. In this work a prototype telecentric system (DFOS-Duke Fresnel Optical-CT Scanner) is evaluated which incorporates two substantial design changes: the use of Fresnel lenses (reducing lens costs from $10-30K t0 $1-3K) and the use of a 'solid tank' (which reduces noise, and the volume of refractively matched fluid from 1 ltr to 10 cc). The efficacy of DFOS was evaluated by direct comparison against commissioned scanners in our lab. Measured dose distributions from all systems were compared against the predicted dose distributions from a commissioned treatment planning system (TPS). Three treatment plans were investigated including a simple four-field box treatment, a multiple small field delivery, and a complex IMRT treatment. Dosimeters were imaged within 2 h post irradiation, using consistent scanning techniques (360 projections acquired at 1 degree intervals, reconstruction at 2mm). DFOS efficacy was evaluated through inspection of dose line-profiles, and 2D and 3D dose and gamma maps. DFOS/TPS gamma pass rates with 3%/3mm dose difference/distance-to-agreement criteria ranged from 89.3% to 92.2%, compared to from 95.6% to 99.0% obtained with the commissioned system. The 3D gamma pass rate between the commissioned system and DFOS was 98.2%. The typical noise rates in DFOS reconstructions were up to 3%, compared to under 2% for the commissioned system. In conclusion, while the introduction of a solid tank proved advantageous with regards to cost and convenience, further work is required to improve the image quality and dose reconstruction accuracy of the new DFOS optical-CT system.
Resumo:
Motivated by the Minimal Dark Matter scenario, we consider the annihilation into gamma rays of candidates in the fermionic 5-plet and scalar 7-plet representations of SU(2)L, taking into account both the Sommerfeld effect and the internal bremsstrahlung. Assuming the Einasto profile, we show that present measurements of the Galactic Center by the H.E.S.S. instrument exclude the 5-plet and 7-plet as the dominant form of dark matter for masses between 1 TeV and 20 TeV, in particular, the 5-plet mass leading to the observed dark matter density via thermal freeze-out. We also discuss prospects for the upcoming Cherenkov Telescope Array, which will be able to probe even heavier dark matter masses, including the scenario where the scalar 7-plet is thermally produced.