937 resultados para Mineral industries Queensland Waste disposal
Resumo:
In Australia and many other countries worldwide, water used in the manufacture of concrete must be potable. At present, it is currently thought that concrete properties are highly influenced by the water type used and its proportion in the concrete mix, but actually there is little knowledge of the effects of different, alternative water sources used in concrete mix design. Therefore, the identification of the level and nature of contamination in available water sources and their subsequent influence on concrete properties is becoming increasingly important. Of most interest, is the recycled washout water currently used by batch plants as mixing water for concrete. Recycled washout water is the water used onsite for a variety of purposes, including washing of truck agitator bowls, wetting down of aggregate and run off. This report presents current information on the quality of concrete mixing water in terms of mandatory limits and guidelines on impurities as well as investigating the impact of recycled washout water on concrete performance. It also explores new sources of recycled water in terms of their quality and suitability for use in concrete production. The complete recycling of washout water has been considered for use in concrete mixing plants because of the great benefit in terms of reducing the cost of waste disposal cost and environmental conservation. The objective of this study was to investigate the effects of using washout water on the properties of fresh and hardened concrete. This was carried out by utilizing a 10 week sampling program from three representative sites across South East Queensland. The sample sites chosen represented a cross-section of plant recycling methods, from most effective to least effective. The washout water samples collected from each site were then analysed in accordance with Standards Association of Australia AS/NZS 5667.1 :1998. These tests revealed that, compared with tap water, the washout water was higher in alkalinity, pH, and total dissolved solids content. However, washout water with a total dissolved solids content of less than 6% could be used in the production of concrete with acceptable strength and durability. These results were then interpreted using chemometric techniques of Principal Component Analysis, SIMCA and the Multi-Criteria Decision Making methods PROMETHEE and GAIA were used to rank the samples from cleanest to unclean. It was found that even the simplest purifying processes provided water suitable for the manufacture of concrete form wash out water. These results were compared to a series of alternative water sources. The water sources included treated effluent, sea water and dam water and were subject to the same testing parameters as the reference set. Analysis of these results also found that despite having higher levels of both organic and inorganic properties, the waters complied with the parameter thresholds given in the American Standard Test Method (ASTM) C913-08. All of the alternative sources were found to be suitable sources of water for the manufacture of plain concrete.
Resumo:
In 2010, Vincent Ruggiero and Nigel South coined the term ‘dirty collar crime’ to define corporate entrepreneurs that monopolise waste disposal companies and profit from illegal environmental activities. This paper explores the ways in which ‘the environment’ has become big business for organised criminal enterprises. It draws on original fieldwork conducted in Italy and examines the exploits of the ‘eco mafia’. It concludes that the fluidity associated with term ‘environment’ and its cavalier usage in political and public discourse creates ambivalence for regulation and protection. Whilst trade continues to assert an international priority within the landscapes of global economics and fiscal prosperity; organized environmental crime takes advantage of growing markets. As a result, movements of environmental activism emerge as the new front in the surveillance, regulation and prosecution of organised environmental crime. Such voices must continue to be central to future green criminological perspectives that seek environmental, ecological and species justice.
Resumo:
The scarcity of large parcels of land in well-serviced areas is one motivator for redeveloping industrial or commercial property that is abandoned or underused and often environmentally contaminated – so-called brownfield land. Poor industrial waste disposal practices caused by industrial activities including gas works, factories, railway land and waste tips have contributed to many instances of contaminated land identified as brownfield sites. It is estimated there are between 10,000 and 160,000 brownfield sites in Australia, with Queensland accounting for around 4000 of these.
Resumo:
The wetland resources of the Queensland coastline have been mapped by the Resource Condition and Trend Unit, Fisheries Group, Department of Primary Industries Queensland. This process is being undertaken in order to provide a baseline dataset for Fish Habitat Area (FHA) declaration, Ramsar site nomination and continued monitoring of these important fish habitats. This report summarises the results of the mapping undertaken from Round Hill Head to Tin Can Inlet. The study was undertaken in order to: 1. document and map the coastal wetland communities from Round Hill Head (24°S) to Tin Can Inlet (26°S); 2. document levels of existing disturbance to and protection of the wetlands; 3. examine existing recreational and commercial fisheries in the region; and 4. evaluate the conservation values of the areas investigated from the viewpoint of fisheries productivity and as habitat for important and/or threatened species.
Resumo:
An overview of the commercial growing, management and processing of forest products in Queensland.
Resumo:
Biomineralization and biogenesis of iron ore deposits are illustrated in relation to indigenous microorganisms inhabiting iron ore mines. Aerobic and anaerobic microorganisms indigenous to iron oxide mineralization are analyzed. Microbially-induced flotation and flocculation of iron ore minerals such as hematite, alumina, calcite and quartz are discussed with respect to use of four types of microorganisms, namely, Paenibacillus polymyxa, Bacillus subtilis, Saccharomyces cerevisiae and Desulfovibrio desulfuricans. The role of the above organisms in the removal of silica, alumina, clays and apatite from hematite is illustrated with respect to mineral-specific bioreagents, surface chemical changes and microbe-mineral interaction mechanisms. Silica and alumina removal from real iron ores through biobeneficiation is outlined. Environmental benefits of biobeneficiation are demonstrated with respect to biodegradation of toxic reagents and environmentally-safe waste disposal and processing.
Resumo:
The safe disposal of liquid wastes associated with oil and gas production in the United States is a major challenge given their large volumes and typically high levels of contaminants. In Pennsylvania, oil and gas wastewater is sometimes treated at brine treatment facilities and discharged to local streams. This study examined the water quality and isotopic compositions of discharged effluents, surface waters, and stream sediments associated with a treatment facility site in western Pennsylvania. The elevated levels of chloride and bromide, combined with the strontium, radium, oxygen, and hydrogen isotopic compositions of the effluents reflect the composition of Marcellus Shale produced waters. The discharge of the effluent from the treatment facility increased downstream concentrations of chloride and bromide above background levels. Barium and radium were substantially (>90%) reduced in the treated effluents compared to concentrations in Marcellus Shale produced waters. Nonetheless, (226)Ra levels in stream sediments (544-8759 Bq/kg) at the point of discharge were ~200 times greater than upstream and background sediments (22-44 Bq/kg) and above radioactive waste disposal threshold regulations, posing potential environmental risks of radium bioaccumulation in localized areas of shale gas wastewater disposal.
Resumo:
The disposal of industrial waste presents major logistical, financial and environmental issues. Technologies that can reduce the hazardous properties of wastes are urgently required. In the present work, a number of industrial wastes arising from the cement, metallurgical, paper, waste disposal and energy industries were treated with accelerated carbonation. In this process carbonation was effected by exposing the waste to pure carbon dioxide gas. The paper and cement wastes chemically combined with up to 25% by weight of gas. The reactivity of the wastes to carbon dioxide was controlled by their constituent minerals, and not by their elemental composition, as previously postulated. Similarly, microstructural alteration upon carbonation was primarily influenced by mineralogy. Many of the thermal wastes tested were classified as hazardous, based upon regulated metal content and pH. Treatment by accelerated carbonation reduced the leaching of certain metals, aiding the disposal of many as stable non-reactive wastes. Significant volumes of carbon dioxide were sequestrated into the accelerated carbonated treated wastes.
Resumo:
Incinerator bottom ash (IBA) is a residual produced from incinerating municipal solid waste. In the past, IBA presented a big waste disposal problem; however, various recycling approaches have been adopted in recent years to mitigate this problem, as well as to provide a useful alternative to using primary aggregate resources. The use of IBA as an alternative to conventional aggregates in different civil engineering construction applications helps to conserve premium grade aggregate supplies; however, when IBA is in contact with water in the field, as a consequence of precipitation events or changes in water table, elements, such as salts and heavy metals, may be released to the soil and ground water. In this work, IBA waste was mixed with limestone aggregate to produce a blend with acceptable mechanical properties and minimum environmental risks for use as road foundation. The study focused on evaluating potential environmental impacts of some constituents, including sulphate, chloride, sodium, copper, zinc and lead in IBA blends using a lysimeter as a large scale leaching tool. Moreover, a specific scenario simulating field conditions was adopted in the lysimeter to assess the potential impact of changing conditions, such as IBA content in the blend, liquid to solid ratio (L/S) and pH value, on long-term release of heavy metals and salts. Then, numerical modelling was used to predict the release of the aforementioned constituents from IBA based on initial measurement of intrinsic material properties and the kinetic desorption process concept. Experimental results showed that zinc and lead were released in very low concentrations but sodium and sulphate were in high concentrations. The control limestone only blend also demonstrated low release concentrations of constituents in comparison to IBA blends, where constituent concentrations increased with increase in IBA content. Experimental results were compared with numerical results obtained using a non-equilibrium desorption model. Good agreement was found between the two sets of data.
Resumo:
The illegal burial of waste often occurs in locations where loose, transferable material is abundant, allowing covert pits to be dug or filled. The transfer of waste material onto suspects and their vehicles during loading, unloading, and burial is common, as is the case during other criminal activities such as the burial of murder victims. We use two case studies to show that the established principles of using geological materials in excluding or linking suspects can be applied to illegal waste disposal. In the first case, the layering of different geological materials on the tailgate of a container used to transport toxic waste demonstrated where the vehicle had been and denied the owner's alibi, associating him with an illegal dumpsite. In the second case, an unusual suite of minerals, recovered from a suspect's trousers, provided the intelligence that led environmental law enforcement officers to an illegal waste burial site.
Resumo:
A groundwater programme monitoring flow and quality of a potable water spring in a slum district in Kampala, Uganda revealed that although latrines acted as the principal means of organic waste disposal for the 1000 plus people living in the spring’s catchment, levels of faecal indicator bacteria (TVC 45 Deg C) in spring discharge remained at or below detection during the dry season, despite the presence of high levels of chloride (45mg/l-56mg/l) and nitrate (23mg/l – 30mg/l NO3-N), indicating sewage impacts. A programme of column and batch testing of laterite underlying the area provided a means of investigating the soil’s attenuation capacity under more controlled conditions.
X-ray diffraction analyses revealed the laterite to be dominated by quartz and kaolinite with minor (<5% by volume) quantities of haematite. Batch studies revealed that over 99% of bacteriophage adsorbed to haematite in less than 5 minutes. By contrast batch tests on haematite-free soil samples from the Blue Hills in Australia showed that although they had comparable dominant mineralogy and iron coverage on their surfaces (determined from Energy dispersive X-ray fluorescence) they had negligible ability to adsorb H40/1.
Based on the results of the batch studies using natural soils, a programme of batch studies, undertaken using pure haematite showed the mineral to have an extremely high capacity to adsorb bacteriophage, and suggested that it was responsible for the levels of attenuation observed.
The results of column studies were in keeping with the findings of batch experiments. Injection of 20 pore volumes of 300 pfu/mL of the bacteriophage H40/1 into a 20mm diameter glass column packed with sand sized (Ø>500µm) laterite revealed that the column could irreversibly remove over 2.5 log10 bacteriophage over its 10cm length.
Importance:
Mineralogical and batch test data provide convincing evidence to show that laterite can potentially act as an inexpensive means of removing micro organisms from water. The material, particularly in nodular form, displays considerable potential to act as an alternative filter material to conventional quartz filter sands.
Resumo:
Glass fibre-reinforced plastics (GFRP), nowadays commonly used in the construction, transportation and automobile sectors, have been considered inherently difficult to recycle due to both: cross-linked nature of thermoset resins, which cannot be remolded, and complex composition of the composite itself, which includes glass fibres, matrix and different types of inorganic fillers. Presently, most of the GFRP waste is landfilled leading to negative environmental impacts and supplementary added costs. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. There are several methods to recycle GFR thermostable materials: (a) incineration, with partial energy recovery due to the heat generated during organic part combustion; (b) thermal and/or chemical recycling, such as solvolysis, pyrolisis and similar thermal decomposition processes, with glass fibre recovering; and (c) mechanical recycling or size reduction, in which the material is subjected to a milling process in order to obtain a specific grain size that makes the material suitable as reinforcement in new formulations. This last method has important advantages over the previous ones: there is no atmospheric pollution by gas emission, a much simpler equipment is required as compared with ovens necessary for thermal recycling processes, and does not require the use of chemical solvents with subsequent environmental impacts. In this study the effect of incorporation of recycled GFRP waste materials, obtained by means of milling processes, on mechanical behavior of polyester polymer mortars was assessed. For this purpose, different contents of recycled GFRP waste materials, with distinct size gradings, were incorporated into polyester polymer mortars as sand aggregates and filler replacements. The effect of GFRP waste treatment with silane coupling agent was also assessed. Design of experiments and data treatment were accomplish by means of factorial design and analysis of variance ANOVA. The use of factorial experiment design, instead of the one factor at-a-time method is efficient at allowing the evaluation of the effects and possible interactions of the different material factors involved. Experimental results were promising toward the recyclability of GFRP waste materials as polymer mortar aggregates, without significant loss of mechanical properties with regard to non-modified polymer mortars.
Resumo:
Glass fibre-reinforced plastics (GFRP) have been considered inherently difficult to recycle due to both: cross-linked nature of thermoset resins, which cannot be remolded, and complex composition of the composite itself. Presently, most of the GFRP waste is landfilled leading to negative environmental impacts and supplementary added costs. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. In this study, efforts were made in order to recycle grinded GFRP waste, proceeding from pultrusion production scrap, into new and sustainable composite materials. For this purpose, GFRP waste recyclates, were incorporated into polyester based mortars as fine aggregate and filler replacements at different load contents and particle size distributions. Potential recycling solution was assessed by mechanical behaviour of resultant GFRP waste modified polymer mortars. Results revealed that GFRP waste filled polymer mortars present improved flexural and compressive behaviour over unmodified polyester based mortars, thus indicating the feasibility of the waste reuse in polymer mortars and concrete. © 2011, Advanced Engineering Solutions.