981 resultados para Mine Hydrology, Groundwater Model, Pit Stability


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report results of first-principles calculations on the thermodynamic stability of different Sr adatom structures that have been proposed to explain some of the observed reconstructions of the (001) surface of strontium titanate (Kubo and Nozoye 2003 Surf Sci. 542 177). From surface free energy calculations, a phase diagram is constructed indicating the range of conditions over which each structure is most stable. These results are compared with Kubo and Nozoye's experimental observations. It is concluded that low Sr adatom coverage structures can only be explained if the surface is far from equilibrium. Intermediate coverage structures are stable only if the surface is in or very nearly in equilibrium with the strontium oxide.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A modified abstract version of the Comprehensive Aquatic Simulation Model (CASM) is found to exhibit three types of folded bifurcations due to nutrient loading. The resulting bifurcation diagrams account for nonlinear dynamics such as regime shifts and cyclic changes between clear-water state and turbid state that have actually been observed in real lakes. In particular, pulse-perturbation simulations based on the model presented suggest that temporal behaviors of real lakes after biomanipulations can be explained by pulse-dynamics in complex ecosystems, and that not only the amplitude (manipulated abundance of organisms) but also the phase (timing) is important for restoring lakes by biomanipulation. Ecosystem management in terms of possible irreversible changes in ecosystems induced by regime shifts is also discussed. (c) 2007 Elsevier B.V All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper considers the ways in which structural model parameter variability can in?uence aeroelastic stability. Previous work on formulating the stability calculation (with the Euler equations providing the aerodynamic predictions) is exploited to use Monte Carlo, Interval and Perturbation calculations to allow this question to be investigated. Three routes are identi?ed. The ?rst involves variable normal mode frequencies only. The second involves normal mode frequencies and mode shapes. Finally, the third, in addition to normal mode frequencies and mode shapes, also includes their in?uence on the static equilibrium. Previous work has suggested only considering route 1, which allows signi?cant gains in computational e?ciency if reduced order models can be built for the aerodynamics. However, results in the current paper show that neglecting route 2 can give misleading results for the ?utter onset prediction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper considers the ways in which structural model parameter variability can influence aeroelastic stability. Previous work on formulating the stability calculation (with the Euler equations providing the aerodynamic predictions) is exploited to use Monte Carlo, interval, and perturbation calculations to allow this question to be investigated. Three routes are identified. The first involves variable normal-mode frequencies only. The second involves normal-mode frequencies and shapes. Finally, the third, in addition to normal-mode frequencies and shapes, also includes their influence on the static equilibrium. Previous work has suggested only considering the first route, which allows significant gains in computational efficiency if reduced-order models can be built for the aerodynamics. However, results in the current paper show that neglecting the mode-shape variation can give misleading results for the flutter-onset prediction, complicating the development of reduced aerodynamic models for variability analysis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The management of water resources in Ireland prior to the Water Framework Directive (WFD) has focussed on surface water and groundwater as separate entities. A critical element to the successful implementation of the
WFD is to improve our understanding of the interaction between the two and flow mechanisms by which groundwaters discharge to surface waters. An improved understanding of the contribution of groundwater to surface water is required for the classification of groundwater body status and the determination of groundwater quality thresholds. The results of the study will also have a wider application to many areas of the WFD.
A subcommittee of the WFD Groundwater Working Group (GWWG) has been formed to develop a methodology to estimate the groundwater contribution to Irish Rivers. The group has selected a number of analytical techniques to quantify components of stream flow in an Irish context (Master Recession Curve, Unit Hydrograph, Flood Studies Report methodologies and
hydrogeological analytical modelling). The components of stream flow that can be identified include deep groundwater, intermediate and overland. These analyses have been tested on seven pilot catchments that have a variety of hydrogeological settings and have been used to inform and constrain a mathematical model. The mathematical model used was the NAM (NedbØr-AfstrØmnings-Model) rainfall-runoff model which is a module of DHIs MIKE 11 modelling suite. The results from these pilot catchments have been used to develop a decision model based on catchment descriptors from GIS datasets for the selection of NAM parameters. The datasets used include the mapping of aquifers, vulnerability and subsoils, soils, the Digital Terrain Model, CORINE and lakes. The national coverage of the GIS datasets has allowed the extrapolation of the mathematical model to regional catchments across Ireland.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hard‐rock watersheds commonly exhibit complex geological bedrock and morphological features. Hydromineral resources have relevant economic value for the thermal spas industry. The present study aims to develop a groundwater vulnerability approach in Caldas da Cavaca hydromineral system (Aguiar da Beira, Central Portugal) which has a thermal tradition that dates back to the late 19th century, and contribute to a better understanding of the hydrogeological conceptual site model. In this work different layers were overlaid, generating several thematic maps to arrive at an integrated framework of several key‐sectors in Caldas da Cavaca site. Thus, to accomplish a comprehensive analysis and conceptualization of the site, a multi‐technical approach was used, such as, field and laboratory techniques, where several data was collected, like geotectonics, hydrology and hydrogeology, hydrogeomorphology, hydrogeophysical and hydrogeomechanical zoning aiming the application of the so‐called DISCO method. All these techniques were successfully performed and a groundwater vulnerability to contamination assessment, based on GOD‐S, DRASTIC‐Fm, SINTACS, SI and DISCO indexes methodology, was delineated. Geographical Information Systems (GIS) technology was on the basis to organise and integrate the geodatabases and to produce all the thematic maps. This multi‐technical approach highlights the importance of groundwater vulnerability to contamination mapping as a tool to support hydrogeological conceptualisation, contributing to better decision‐making of water resources management and sustainability.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Geometric parameters of binary (1:1) PdZn and PtZn alloys with CuAu-L10 structure were calculated with a density functional method. Based on the total energies, the alloys are predicted to feature equal formation energies. Calculated surface energies of PdZn and PtZn alloys show that (111) and (100) surfaces exposing stoichiometric layers are more stable than (001) and (110) surfaces comprising alternating Pd (Pt) and Zn layers. The surface energy values of alloys lie between the surface energies of the individual components, but they differ from their composition weighted averages. Compared with the pure metals, the valence d-band widths and the Pd or Pt partial densities of states at the Fermi level are dramatically reduced in PdZn and PtZn alloys. The local valence d-band density of states of Pd and Pt in the alloys resemble that of metallic Cu, suggesting that a similar catalytic performance of these systems can be related to this similarity in the local electronic structures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

There are now considerable expectations that semi-distributed models are useful tools for supporting catchment water quality management. However, insufficient attention has been given to evaluating the uncertainties inherent to this type of model, especially those associated with the spatial disaggregation of the catchment. The Integrated Nitrogen in Catchments model (INCA) is subjected to an extensive regionalised sensitivity analysis in application to the River Kennet, part of the groundwater-dominated upper Thames catchment, UK The main results are: (1) model output was generally insensitive to land-phase parameters, very sensitive to groundwater parameters, including initial conditions, and significantly sensitive to in-river parameters; (2) INCA was able to produce good fits simultaneously to the available flow, nitrate and ammonium in-river data sets; (3) representing parameters as heterogeneous over the catchment (206 calibrated parameters) rather than homogeneous (24 calibrated parameters) produced a significant improvement in fit to nitrate but no significant improvement to flow and caused a deterioration in ammonium performance; (4) the analysis indicated that calibrating the flow-related parameters first, then calibrating the remaining parameters (as opposed to calibrating all parameters together) was not a sensible strategy in this case; (5) even the parameters to which the model output was most sensitive suffered from high uncertainty due to spatial inconsistencies in the estimated optimum values, parameter equifinality and the sampling error associated with the calibration method; (6) soil and groundwater nutrient and flow data are needed to reduce. uncertainty in initial conditions, residence times and nitrogen transformation parameters, and long-term historic data are needed so that key responses to changes in land-use management can be assimilated. The results indicate the general, difficulty of reconciling the questions which catchment nutrient models are expected to answer with typically limited data sets and limited knowledge about suitable model structures. The results demonstrate the importance of analysing semi-distributed model uncertainties prior to model application, and illustrate the value and limitations of using Monte Carlo-based methods for doing so. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Acid mine drainage (AMD) is a widespread environmental problem associated with both working and abandoned mining operations. As part of an overall strategy to determine a long-term treatment option for AMD, a pilot passive treatment plant was constructed in 1994 at Wheal Jane Mine in Cornwall, UK. The plant consists of three separate systems, each containing aerobic reed beds, anaerobic cell and rock filters, and represents the largest European experimental facility of its kind. The systems only differ by the type of pretreatment utilised to increase the pH of the influent minewater (pH <4): lime dosed (LD), anoxic limestone drain (ALD) and lime free (LF), which receives no form of pretreatment. Historical data (1994-1997) indicate median Fe reduction between 55% and 92%, sulphate removal in the range of 3-38% and removal of target metals (cadmium, copper and zinc) below detection limits, depending on pretreatment and flow rates through the system. A new model to simulate the processes and dynamics of the wetlands systems is described, as well as the application of the model to experimental data collected at the pilot plant. The model is process based, and utilises reaction kinetic approaches based on experimental microbial techniques rather than an equilibrium approach to metal precipitation. The model is dynamic and utilises numerical integration routines to solve a set of differential equations that describe the behaviour of 20 variables over the 17 pilot plant cells on a daily basis. The model outputs at each cell boundary are evaluated and compared with the measured data, and the model is demonstrated to provide a good representation of the complex behaviour of the wetland system for a wide range of variables. (C) 2004 Elsevier B.V/ All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We compared output from 3 dynamic process-based models (DMs: ECOSSE, MILLENNIA and the Durham Carbon Model) and 9 bioclimatic envelope models (BCEMs; including BBOG ensemble and PEATSTASH) ranging from simple threshold to semi-process-based models. Model simulations were run at 4 British peatland sites using historical climate data and climate projections under a medium (A1B) emissions scenario from the 11-RCM (regional climate model) ensemble underpinning UKCP09. The models showed that blanket peatlands are vulnerable to projected climate change; however, predictions varied between models as well as between sites. All BCEMs predicted a shift from presence to absence of a climate associated with blanket peat, where the sites with the lowest total annual precipitation were closest to the presence/absence threshold. DMs showed a more variable response. ECOSSE predicted a decline in net C sink and shift to net C source by the end of this century. The Durham Carbon Model predicted a smaller decline in the net C sink strength, but no shift to net C source. MILLENNIA predicted a slight overall increase in the net C sink. In contrast to the BCEM projections, the DMs predicted that the sites with coolest temperatures and greatest total annual precipitation showed the largest change in carbon sinks. In this model inter-comparison, the greatest variation in model output in response to climate change projections was not between the BCEMs and DMs but between the DMs themselves, because of different approaches to modelling soil organic matter pools and decomposition amongst other processes. The difference in the sign of the response has major implications for future climate feedbacks, climate policy and peatland management. Enhanced data collection, in particular monitoring peatland response to current change, would significantly improve model development and projections of future change.