947 resultados para Mid-latitude
Resumo:
An abrupt global warming of 3-4°C occurred near the end of the Maastrichtian at 65.45-65.10 Ma. The environmental effects of this warm event are here documented based on stable isotopes and quantitative analysis of planktonic foraminifera at the South Atlantic DSDP Site 525A. Stable isotopes of individual species mark a rapid increase in temperature and a reduction in the vertical water mass stratification that is accompanied by a decrease in niche habitats, reduced species diversity and/or abundance, smaller species morphologies or dwarfing, and reduced photosymbiotic activity. During the warm event, the relative abundance of a large number of species decreased, including tropical-subtropical affiliated species, whereas typical mid-latitude species retained high abundances. This indicates that climate warming did not create favorable conditions for all tropical-subtropical species at mid-latitudes and did not cause a massive retreat in the local mid-latitude population. A noticeable exception is the ecological generalist Heterohelix dentata Stenestad that dominated during the cool intervals, but significantly decreased during the warm event. However, dwarfing is the most striking response to the abrupt warming and occurred in various species of different morphologies and lineages (e.g. biserial, trochospiral, keeled globotruncanids). Dwarfing is a typical reaction to environmental stress conditions and was likely the result of increased reproduction rates. Similarly, photosymbiotic activity appears to have been reduced significantly during the maximum warming, as indicated by decreased delta13C values. The foraminiferal response to climate change is thus multifaceted resulting in decreased species diversity, decreased species populations, increased competition due to reduced niche habitats, dwarfing and reduced photosymbiotic activity.
Resumo:
Unusually well preserved Cretaceous radiolarians are observed in the subsurface sections from two drilled sites in the Weddell Sea collected during Leg 113 of the Ocean Drilling Program. Radiolarians from the lithified calcareous chalk of Hole 689B represent the first Campanian-Maestrichtian assemblage which is characterized by abundant Cromyodruppa Iconcentrica, Dictyomitra multicostata, and Protostichocapsa stocki. Abundant Pseudodictyomitra pentacolaensis and Diacanthocapsa sp. 1, on the other hand, are the main constituents of the assemblage from the latest Aptian/earliest Albian diatomite of Hole 693B. These represent the oldest and the highest-latitude reported radiolarian occurrences from the Atlantic sector of the Antarctic Ocean. The assemblages are marked by their low diversity and an absence of low- to mid-latitude zonal indices.
Resumo:
An integrated biostratigraphic and stable isotope investigation was conducted on a high-latitude sequence across the Cretaceous/Paleogene (K/P) boundary recovered in Hole 750A in the southern Indian Ocean. The sequence consists of nannofossil chalk and is discontinuous across the boundary; missing is an estimated 0.3-m.y. late Maestrichtian and early Danian interval. Nonetheless, because calcareous nannofossil Zones NP1 and NP2 are well-developed, micropaleontological studies of the sequence have yielded a detailed record of Danian high-latitude microplankton evolution. In addition, stable carbon isotope analyses of planktonic and benthic foraminifer and bulk samples provide a record of late Maestrichtian and early Danian surface- and deep-water carbon isotope variations. Together, the carbon isotope and carbonate accumulation records serve as an index of regional marine net productivity across the boundary. Earliest Danian nannoplankton assemblages consisted mainly of persistent genera that were generally rare or absent in the Upper Cretaceous at Hole 750A. However, by 0.5-0.6 m.y. after the boundary, newly evolving Danian taxa became dominant. The turnover in nannofossil assemblages was accompanied by significant changes in rates of net productivity as gauged by carbon isotope distributions and carbonate accumulation rates. During the period dominated by persistent taxa, net productivity was extremely low, as reflected by the absence of vertical delta13C gradients and reduced carbonate accumulation rates. Later in the Danian, as new species evolved and flourished, vertical delta13C gradients reappeared and carbonate accumulation rates increased, signaling partial recovery of net productivity in this region. The absolute timing and magnitude of late Maestrichtian and early Danian biotic and geochemical changes in the southern Indian Ocean were similar to those recorded in other pelagic K/P boundary sequences from low- and mid-latitude Atlantic and Pacific sites, indicating that these events were ubiquitous.
Resumo:
A high-resolution stratigraphic framework is presented for sapropel S5, which represents the low-mid latitude climate optimum of the previous interglacial period (Eemian). The framework is based on three sites along a transect from west to east through the eastern Mediterranean, and is further validated using a fourth site. This method allows expression of S5-based proxy records of Eemian climate variability along a standardised depth scale that offers unprecedented possibilities for assessment of spatial gradients and signal leads and lags in an interval where highresolution (radiocarbon-style) dating cannot be performed. Our lateral comparison of S5 sapropels suggests that the onset of S5 in ODP site 967C (Eratosthenes seamount) was 1-6 centuries delayed relative to the onsets in more westerly sites.
Resumo:
The rain regime of the Levant during the late Quaternary was controlled primarily by Mediterranean cyclonic systems associated with North Atlantic climate shifts. Lake levels in the Dead Sea basin have been robust recorders of the regional hydrology and generally indicate highstand (wet) conditions throughout glacial intervals and lowstands (dry) during interglacials. However, sporadic deposition of travertines and speleothems occurred in the Negev Desert and Arava Valley during past interglacials, suggesting intrusions of humidity from southern sources probably in association with enhanced activity of mid-latitude Red Sea synoptic troughs and/or low-latitude tropical plumes. The southerly incursions of wetness were superimposed on the long-term interglacial Levantine arid conditions, as reflected by the current prevailing hyperaridity, and could have had an important impact on human migra- tion through the Red Sea-Dead Sea corridor.
Resumo:
Quantitative coccolithophore analyses were performed in core MD01-2446, located in the mid-latitude North Atlantic, to reconstruct climatically induced sea-surface water conditions throughout Marine Isotope Stages (MIS) 14-9. The data are compared to new and available paleoenvironmental proxies from the same site as well as other nearby North Atlantic records that support the coccolithophore signature at glacial-interglacial to millennial climate scale. Total coccolithophore absolute abundance increases during interglacials but abruptly drops during the colder glacial phases and deglaciations. Coccolithophore warm-water taxa (wwt) indicate that MIS11c and MIS9e experienced warmer and more stable conditions throughout the whole photic zone compared to MIS13. MIS11 was a long-lasting warmer and stable interglacial characterized by a climate optimum during MIS11c when a more prominent influence of the subtropical front at the site is inferred. The wwt pattern also suggests distinct interstadial and stadial events lasting about 4-10 kyr. The glacial increases of Gephyrocapsa margereli-G. muellerae 3-4 µm along with higher values of Corg, additionally supported by the total alkenone abundance at Site U1313, indicate more productive surface waters, likely reflecting the migration of the polar front into the mid-latitude North Atlantic. Distinctive peaks of G. margereli-muellerae (> 4 µm), C. pelagicus pelagicus, Neogloboquadrina pachyderma left coiling, and reworked nannofossils, combined with minima in total nannofossil accumulation rate, are tracers of Heinrich-type events during MIS12 and MIS10. Additional Heinrich-type events are suggested during MIS12 and MIS14 based on biotic proxies, and we discuss possible iceberg sources at these times. Our results improve the understanding of mid-Brunhes paleoclimate and the impact on phytoplankton diversity in the mid-latitude North Atlantic region.
Resumo:
The Arctic Ocean is connected with the North Atlantic Ocean by the Fram Strait between Greenland and Svalbard. The strait is located in the northern part of the Greenland Sea. In the eastern part of the strait, warm saline water flows northward as the West Spitsbergen Current; while in the western part, cold less-saline water flows southward as the East Greenland Current. The northwestern part of the Greenland Sea is normally covered with sea ice even in summer. Furthermore, this region is regarded as a major area where the Arctic sea ice is discharged into mid latitude oceans. Thus, this area plays an important role in heat and salt exchange processes in the Arctic marine system. The reveal exchange processes of water masses and ocean-atmosphere interaction in high-latitude oceans, a number of international research programs have been focused on the Greenland Sea and its surrounding waters. As one of the international Arctic research programs, oceanographic studies have been executed in cooperation with the Norsk Polarinstitutt and other institutes under the leadership of the National Institute of Polar Research since 1991. Japanese scientists have been carrying out field observations in and around Svalbard. The observations include not only physical measurements but also biological surveys. This report presents physical oceanographic data obtained in the Greenland Sea in 1992 and 1993, and data around Svalbard from 1991 to 1993.
Resumo:
Stable isotope and ice-rafted debris records from three core sites in the mid-latitude North Atlantic (IODP Site U1313, MD01-2446, MD03-2699) are combined with records of ODP Sites 1056/1058 and 980 to reconstruct hydrographic conditions during the middle Pleistocene spanning Marine Isotope Stages (MIS) 9-14 (300-540 ka). Core MD03-2699 is the first high-resolution mid-Brunhes record from the North Atlantic's eastern boundary upwelling system covering the complete MIS 11c interval and MIS 13. The array of sites reflect western and eastern basin boundary current as well as north to south transect sampling of subpolar and transitional water masses and allow the reconstruction of transport pathways in the upper limb of the North Atlantic's circulation. Hydrographic conditions in the surface and deep ocean during peak interglacial MIS 9 and 11 were similar among all the sites with relative stable conditions and confirm prolonged warmth during MIS 11c also for the mid-latitudes. Sea surface temperature (SST) reconstructions further reveal that in the mid-latitude North Atlantic MIS 11c is associated with two plateaus, the younger one of which is slightly warmer. Enhanced subsurface northward heat transport in the eastern boundary current system, especially during early MIS 11c, is denoted by the presence of tropical planktic foraminifer species and raises the question how strongly it impacted the Portuguese upwelling system. Deep water ventilation at the onset of MIS 11c significantly preceded surface water ventilation. Although MIS 13 was generally colder and more variable than the younger interglacials the surface water circulation scheme was the same. The greatest differences between the sites existed during the glacial inceptions and glacials. Then a north - south trending hydrographic front separated the nearshore and offshore waters off Portugal. While offshore waters originated from the North Atlantic Current as indicated by the similarities between the records of IODP Site U1313, ODP Site 980 and MD01-2446, nearshore waters as recorded in core MD03-2699 derived from the Azores Current and thus the subtropical gyre. Except for MIS 12, Azores Current influence seems to be related to eastern boundary system dynamics and not to changes in the Atlantic overturning circulation.
Resumo:
At Ocean Drilling Program Site 689 (Maud Rise, Southern Ocean), d18O records of fine-fraction bulk carbonate and benthic foraminifers indicate that accelerated climate cooling took place following at least two closely spaced early late Eocene extraterrestrial impact events. A simultaneous surface-water productivity increase, as interpreted from d13C data, is explained by enhanced water-column mixing due to increased latitudinal temperature gradients. These isotope data appear to be in concert with organic-walled dinoflagellate-cyst records across the same microkrystite-bearing impact-ejecta layer in the mid-latitude Massignano section (central Italy). In particular, the strong abundance increase of Thalassiphora pelagica is interpreted to indicate cooling or increased productivity at Massignano. Because impact-induced cooling processes are active on time scales of a few years at most, the estimated 100 k.y. duration of the cooling event appears to be too long to be explained by impact scenarios alone. This implies that a feedback mechanism, such as a global albedo increase due to extended snow and ice cover, may have sustained impact-induced cooling for a longer time after the impacts.
Resumo:
We present Plio-Pleistocene records of sediment color, %CaCO3, foraminifer fragmentation, benthic carbon isotopes (d13C) and radiogenic isotopes (Sr, Nd, Pb) of the terrigenous component from IODP Site U1313, a reoccupation of benchmark subtropical North Atlantic Ocean DSDP Site 607. We show that (inter)glacial cycles in sediment color and %CaCO3 pre-date major northern hemisphere glaciation and are unambiguously and consistently correlated to benthic oxygen isotopes back to 3.3 million years ago (Ma) and intermittently so probably back to the Miocene/Pliocene boundary. We show these lithological cycles to be driven by enhanced glacial fluxes of terrigenous material (eolian dust), not carbonate dissolution (the classic interpretation). Our radiogenic isotope data indicate a North American source for this dust (~3.3-2.4 Ma) in keeping with the interpreted source of terrestrial plant wax-derived biomarkers deposited at Site U1313. Yet our data indicate a mid latitude provenance regardless of (inter)glacial state, a finding that is inconsistent with the biomarker-inferred importance of glaciogenic mechanisms of dust production and transport. Moreover, we find that the relation between the biomarker and lithogenic components of dust accumulation is distinctly non-linear. Both records show a jump in glacial rates of accumulation from Marine Isotope Stage, MIS, G6 (2.72 Ma) onwards but the amplitude of this signal is about 3-8 times greater for biomarkers than for dust and particularly extreme during MIS 100 (2.52 Ma). We conclude that North America shifted abruptly to a distinctly more arid glacial regime from MIS G6, but major shifts in glacial North American vegetation biomes and regional wind fields (exacerbated by the growth of a large Laurentide Ice Sheet during MIS 100) likely explain amplification of this signal in the biomarker records. Our findings are consistent with wetter-than-modern reconstructions of North American continental climate under the warm high CO2 conditions of the Early Pliocene but contrast with most model predictions for the response of the hydrological cycle to anthropogenic warming over the coming 50 years (poleward expansion of the subtropical dry zones).
Resumo:
Quantitative records of Globorotalia puncticulata and Globorotalia inflata, the last two members of the Globorotalia (Globoconella) lineage, obtained from North Atlantic sediments collected at DSDP Site 552, ODP Site 659 and ODP Site 665, are used to examine fluctuations in the biogeographic distribution of these species in the Late Pliocene between 3 and 2 Ma. Abundance data indicate that prior to the expansion of Northern Hemisphere glaciation at about 2.5 Ma, Gr. puncticulata was an important component of the planktonic foraminiferal fauna and had a geographic distribution ranging from 2°N to at least 56°N in the North Atlantic. A previously undescribed 6 chambered variant of Gr. puncticulata is found at both Sites 659 and 665. The stratigraphic distribution of this morphotype is restricted, first occurring at 2.9 Ma and then disappearing when glacial intensity increased at 2.75 Ma (isotope stage 110). Similar declines in Gr. puncticulata abundances occurred during glacial isotope stages 102, 100, and 98 immediately prior to the extinction of Gr. puncticulata during glacial isotope stage 96. It appears that this extinction event was latitudinally diachronous within the North Atlantic, occurring earliest in the north at Site 552 (2.453 Ma), then at Site 659 (2.443 Ma) and later still in the Site 665 equatorial record (2.438 Ma). At Site 665 the first record of Gr. inflata occurs during glacial isotope stage 94 (2.416 Ma), shortly after the extinction of Gr. puncticulata. In the mid latitude North Atlantic there was a 340,000 year period following the disappearance of Gr. puncticulata when the Globoconella lineage was absent (the Gr. inflata gap). The Gr. inflata population found in the equatorial Atlantic must therefore have been introduced from the South Atlantic, probably by the South Equatorial Current. Faunal records from Sites 552 and 659 show that it was not until glacial isotope stage 78 (2.10 Ma) that Gr. inflata became widely established in the North Atlantic. Prior to this large-scale migration event, there were two limited colonisation events during glacial isotope stages 86 and 82 when Gr. inflata populations reached as far as Site 659 in the eastern North Atlantic. These incursions are believed to be reflect the entrainment of Gr. inflata within South Atlantic Central Water and the northward subsurface transport of individuals to the coastal upwelling zone off northwest Africa. It seems likely that the same mechanism was responsible for the re-establishment of the Globoconella lineage in the North Atlantic at 2.10 Ma, but in this instance additional factors, such as enhanced glacial circulation patterns and ecological changes within planktonic foraminiferal faunas, resulted in the successful expansion of Gr. inflata across the North Atlantic and the Mediterranean.
Resumo:
Marine sediment cores from the continental slope off mid-latitude Chile (33°S) were studied with regard to grain-size distributions and clay mineral composition. The data provide a 28,000-yr14C accelerator mass spectrometry-dated record of variations in the terrigenous sediment supply reflecting modifications of weathering conditions and sediment source areas in the continental hinterland. These variations can be interpreted in terms of the paleoclimatic evolution of mid-latitude Chile and are compared to existing terrestrial records. Glacial climates (28,000-18,000 cal yr B.P.) were generally cold-humid with a cold-semiarid interval between 26,000 and 22,000 cal yr B.P. The deglaciation was characterized by a trend toward more arid conditions. During the middle Holocene (8000-4000 cal yr B.P.), comparatively stable climatic conditions prevailed with increased aridity in the Coastal Range. The late Holocene (4000-0 cal yr B.P.) was marked by more variable paleoclimates with generally more humid conditions. Variations of rainfall in mid-latitude Chile are most likely controlled by shifts of the latitudinal position of the Southern Westerlies. Compared to the Holocene, the southern westerly wind belt was located significantly farther north during the last glacial maximum. Less important variations of the latitudinal position of the Southern Westerlies also occurred on shorter time scales.
Resumo:
Applying the alkenone method, we estimated sea-surface temperatures (SSTs) for the past 33 kyr in two marine sediment cores recovered from the continental slope off mid-latitude Chile. The SST record shows an increase of 6.7°C from the last ice age (LIA) to the Holocene climatic optimum, while the temperature contrast between LIA and modern temperatures is only about 3.4°C. The timing and magnitude of the last deglacial warming in the ocean correspond to those observed in South American continental records. According to our SST record, the existence of a Younger Dryas equivalent cooling in the Southeast Pacific is much more uncertain than for the continental climate changes. A warming step of about 2.5°C observed between 8 and 7.5 cal kyr BP may have been linked to the early to mid-Holocene climatic transition (8.2-7.8 cal kyr BP), also described from equatorial Africa and Antarctica. In principal, variations in the latitudinal position of the Southern Pacific Westerlies are considered to be responsible for SST changes in the Peru-Chile current off mid-latitude Chile.