994 resultados para Micro-arc oxidation
Resumo:
Using panel data from the four waves of the Indonesia Family Life Survey in 1993, 1997, 2000 and 2007 we investigate the prerequisite for and contribution of micro-family-businesses to economic development. We find that family-owned firms are on average fairly profitable compared with the industrial sector profit standard. Failure rates between 1997 and 2000 are very low (about 10%), while the industrial sector experimented a massive shakeout of about 33% in the wake of the 1997 crisis (Ter Wengel & Rodriguez, 2006), with an increase in the number of family-businesses between the two years of observation. This paper contributes to the economics of entrepreneurship studies by continuing the discussion of entrepreneurship in hostile business environments (Baumol, 1990; Sobel, 2008).
Resumo:
Micro-businesses, those with fewer than five employees, have a significant impact on the economy. These very small players represent 89% of all Australian businesses and, collectively, they provide 17% of the nation’s private sector employment. They are ubiquitous in Australia as in many other nations, embedded in local communities and therefore well placed to influence community wellbeing. Surprisingly, very little is known about micro-Business Community Responsibility (mBCR), the micro-business equivalent of Small Business Social Responsibility (SBSR) and Corporate Social Responsibility (CSR). Most national data available on business support for community wellbeing does not separately identify micro-business contributions. In this study an exploratory approach informed by business ethics theory was taken. Data from 36 semi-structured interviews was analysed to examine perceived mBCR approaches, motivations and barriers. The sample for this study was a mix of micro-business owner-operators situated in suburban shopping areas in Brisbane. Three types of mBCR emerged. All types are at least partly driven by enlightened selfinterest (ESI). However of the three mBCR types, two combine ESI with other approaches. One type combines ESI and philanthropic approaches to mBCR, and the other combines ESI with social entrepreneurial approaches to mBCR. The combination of doing business and doing good for many micro-business owneroperators, suggests mBCR may be a significant, yet unrecognised component of the third sector social economy.
Resumo:
The heterogeneous photocatalytic water purification process has gained wide attention due to its effectiveness in degrading and mineralizing the recalcitrant organic compounds as well as the possibility of utilizing the solar UV and visible light spectrum. This paper aims to review and summarize the recently published works in the field of photocatalytic oxidation of toxic organic compounds such as phenols and dyes, predominant in waste water effluent. In this review, the effects of various operating parameters on the photocatalytic degradation of phenols and dyes are presented. Recent findings suggested that different parameters, such as type of photocatalyst and composition, light intensity, initial substrate concentration, amount of catalyst, pH of the reaction medium, ionic components in water, solvent types, oxidizing agents/electron acceptors, mode of catalyst application, and calcinations temperature can play an important role on the photocatlytic degradation of organic compounds in water environment. Extensive research has focused on the enhancement of photocatalysis by modification of TiO2 employing metal, non-metal and ion doping. Recent advances in TiO2 photocatalysis for the degradation of various phenols and dyes are also highlighted in this review.
Resumo:
In recent years, the application of heterogeneous photocatalytic water purification process has gained wide attention due to its effectiveness in degrading and mineralizing the recalcitrant organic compounds as well as the possibility of utilizing the solar UV and visible light spectrum. This paper aims to review and summarize the recently published works on the titanium dioxide (TiO2) photocatalytic oxidation of pesticides and phenolic compounds, predominant in storm and waste water effluents. The effect of various operating parameters on the photocatalytic degradation of pesticides and phenols are discussed. Results reported here suggested that the photocatalytic degradation of organic compounds depends on the type of photocatalyst and composition, light intensity, initial substrate concentration, amount of catalyst, pH of the reaction medium, ionic components in water, solvent types, oxidizing agents/electron acceptors, catalyst application mode, and calcinations temperature in water environment. A substantial amount of research has focused on the enhancement of TiO2 photocatalysis by modification with metal, non-metal and ion doping. Recent developments in TiO2 photocatalysis for the degradation of various pesticides and phenols are also highlighted in this review. It is evident from the literature survey that photocatalysis has shown good potential for the removal of various organic pollutants. However, still there is a need to find out the practical utility of this technique on commercial scale.
Resumo:
In recent years, there has been an enormous amount of research and development in the area of heterogeneous photocatalytic water purification process due to its effectiveness in degrading and mineralising the recalcitrant organic compounds as well as the possibility of utilising the solar UV and visible spectrum. One hundred and twenty recently published papers are reviewed and summarised here with the focus being on the photocatalytic oxidation of phenols and their derivatives, predominant in waste water effluent. In this review, the effects of various operating parameters on the photocatalytic degradation of phenols and substituted phenols are presented. Recent findings suggested that different parameters, such as type of photocatalyst and composition, light intensity, initial substrate concentration, amount of catalyst, pH of the reaction medium, ionic components in water, solvent types, oxidising agents/electron acceptors, mode of catalyst application, and calcination temperatures can play an important role on the photocatalytic degradation of phenolic compounds in wastewater. Extensive research has focused on the enhancement of photocatalysis by modification of TiO2 employing metal, non-metal and ion doping. Recent developments in TiO2 photocatalysis for the degradation of various phenols and substituted phenols are also reviewed.
Resumo:
Micro-finance, which includes micro-credit as one of its core services, has become an important component of a range of business models – from those that operate on a strictly economic basis to those that come from a philanthropic base, through Non Government Organisations (NGOs). Its success is often measured by the number of loans issued, their size, and the repayment rates. This paper has a dual purpose: to identify whether the models currently used to deliver micro-credit services to the poor are socially responsible and to suggest a new model of delivery that addresses some of the social responsibility issues, while supporting community development. The proposed model is currently being implemented in Beira, the second largest city in Mozambique. Mozambique exhibits many of the characteristics found in other African countries so the model, if successful, may have implications for other poor African nations as well as other developing economies.
Resumo:
In recent years, there has been a significant amount of research and development in the area of solar photocatalysis. This paper reviews and summarizes the mechanism of photocatalytic oxidation process, types of photocatalyst, and the factors influencing the photoreactor efficiency and the most recent findings related to solar detoxification and disinfection of water contaminants. Various solar reactors for photocatlytic water purification are also briefly described. The future potential of solar photocatlysis for storm water treatment and reuse is also discussed to ensure sustainable use of solar energy and storm water resources.
Resumo:
Food microstructure represents the way their elements arrangement and their interaction. Researchers in this field benefit from identifying new methods of examination of the microstructure and analysing the images. Experiments were undertaken to study micro-structural changes of food material during drying. Micro-structural images were obtained for potato samples of cubical shape at different moisture contents during drying using scanning electron microscopy. Physical parameters such as cell wall perimeter, and area were calculated using an image identification algorithm, based on edge detection and morphological operators. The algorithm was developed using Matlab.