996 resultados para Mgo-feo-sio2-al3o3-cr2o3 System


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increased longevity of humans and the demand for a better quality of life have led to a continuous search for new implant materials. Scientific development coupled with a growing multidisciplinarity between materials science and life sciences has given rise to new approaches such as regenerative medicine and tissue engineering. The search for a material with mechanical properties close to those of human bone produced a new family of hybrid materials that take advantage of the synergy between inorganic silica (SiO4) domains, based on sol-gel bioactive glass compositions, and organic polydimethylsiloxane, PDMS ((CH3)2.SiO2)n, domains. Several studies have shown that hybrid materials based on the system PDMS-SiO2 constitute a promising group of biomaterials with several potential applications from bone tissue regeneration to brain tissue recovery, passing by bioactive coatings and drug delivery systems. The objective of the present work was to prepare hybrid materials for biomedical applications based on the PDMS-SiO2 system and to achieve a better understanding of the relationship among the sol-gel processing conditions, the chemical structures, the microstructure and the macroscopic properties. For that, different characterization techniques were used: Fourier transform infrared spectrometry, liquid and solid state nuclear magnetic resonance techniques, X-ray diffraction, small-angle X-ray scattering, smallangle neutron scattering, surface area analysis by Brunauer–Emmett–Teller method, scanning electron microscopy and transmission electron microscopy. Surface roughness and wettability were analyzed by 3D optical profilometry and by contact angle measurements respectively. Bioactivity was evaluated in vitro by immersion of the materials in Kokubos’s simulated body fluid and posterior surface analysis by different techniques as well as supernatant liquid analysis by inductively coupled plasma spectroscopy. Biocompatibility was assessed using MG63 osteoblastic cells. PDMS-SiO2-CaO materials were first prepared using nitrate as a calcium source. To avoid the presence of nitrate residues in the final product due to its potential toxicity, a heat-treatment step (above 400 °C) is required. In order to enhance the thermal stability of the materials subjected to high temperatures titanium was added to the hybrid system, and a material containing calcium, with no traces of nitrate and the preservation of a significant amount of methyl groups was successfully obtained. The difficulty in eliminating all nitrates from bulk PDMS-SiO2-CaO samples obtained by sol-gel synthesis and subsequent heat-treatment created a new goal which was the search for alternative sources of calcium. New calcium sources were evaluated in order to substitute the nitrate and calcium acetate was chosen due to its good solubility in water. Preparation solgel protocols were tested and homogeneous monolithic samples were obtained. Besides their ability to improve the bioactivity, titanium and zirconium influence the structural and microstructural features of the SiO2-TiO2 and SiO2-ZrO2 binary systems, and also of the PDMS-TiO2 and PDMS-ZrO2 systems. Detailed studies with different sol-gel conditions allowed the understanding of the roles of titanium and zirconium as additives in the PDMS-SiO2 system. It was concluded that titanium and zirconium influence the kinetics of the sol-gel process due to their different alkoxide reactivity leading to hybrid xerogels with dissimilar characteristics and morphologies. Titanium isopropoxide, less reactive than zirconium propoxide, was chosen as source of titanium, used as an additive to the system PDMS-SiO2-CaO. Two different sol-gel preparation routes were followed, using the same base composition and calcium acetate as calcium source. Different microstructures with high hydrophobicit were obtained and both proved to be biocompatible after tested with MG63 osteoblastic cells. Finally, the role of strontium (typically known in bioglasses to promote bone formation and reduce bone resorption) was studied in the PDMS-SiO2-CaOTiO2 hybrid system. A biocompatible material, tested with MG63 osteoblastic cells, was obtained with the ability to release strontium within the values reported as suitable for bone tissue regeneration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A structurally-based quasi-chemical viscosity model for fully liquid slags in the Al2O3 CaO-'FeO'-MgO-SiO2 system has been developed. The model links the slag viscosities to the internal structures of the melts through the concentrations of various Si0.5O, Me2/nn+O and Me1/nn+Si0.25O viscous flow structural units. The concentrations of these structural units are derived from a quasi-chemical thermodynamic model of the system. The model described in this series of papers enables the viscosities of liquid slags to be predicted within experimental uncertainties over the whole range of temperatures and compositions in the Al2O3 CaOMgO-SiO2 system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A structurally-based quasi-chemical viscosity model has been developed for the Al2O3 CaO-'FeO'-MgO-SiO2 system. The model links the slag viscosity to the internal structure of melts through the concentrations of various anion/cation Si0.5O, Me2/nn+O and Me1/nn+Si0.25O viscous flow structural units. The concentrations of structural units are derived from the quasi-chemical thermodynamic model. The focus of the work described in the present paper is the analysis of experimental data and the viscosity models for fully liquid slags in the Al2O3-CaO-MgO, Al2O3 MgO-SiO2 and CaO-MgO-SiO2 systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A structurally-based quasi-chemical viscosity model for fully liquid slags in the Al2O3 CaO-'FeO'-MgOSiO2 system has been developed. The focus of the work described in the present paper is the analysis of the experimental data and viscosity models in the quaternary system Al2O3 CaO-MgO-SiO2 and its subsystems. A review of the experimental data, viscometry methods used and viscosity models available in the Al2O3 CaO-MgO-SiO2 and its sub-systems is reported. The quasi-chemical viscosity model is shown to provide good agreement between experimental data and predictions over the whole compositional range.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Equilibrium phase relations in the PbO-Al2O3-SiO2 system have been investigated experimentally by means of high-temperature equilibration, quenching, and electron probe X-ray microanalysis (EPMA). The system has 21 primary phase fields including three monoxides (PbO, Al2O3, and SiO2), seven binary compounds (Al6Si2O13, PbAl2O4, PbAl12O19, Pb2Al2O5, PbSiO3, Pb2SiO4, and Pb4SiO6), and eleven ternary compounds (PbAl2Si2O8, Pb3Al10SiO20, Pb4Al2Si2O11, Pb4Al4SiO12, Pb4Al4Si3O16, Pb4Al4Si5O20, Pb5Al2Si10O28, Pb6Al2Si6O21, Pb8Al2Si4O19, Pb12Al2Si17O49, and Pb12Al2Si20O55). Three new ternary compounds, Pb4Al4SiO12, Pb4Al4Si5O20, and Pb12Al2Si17O49, were observed and characterized by EPMA. No extensive solid solution in any of the compounds was found in the present study. The liquidus isotherms were experimentally determined in most of the primary phase fields in the temperature range from 923 to 1873 K, and the ternary phase diagram of the PbO-Al2O3-SiO2 System has been constructed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The pseudoternary sections FeO-ZnO-(CaO + SiO2) with CaO/SiO2 weight ratios of 0.33, 0.93, and 1.2 in equilibrium with metallic iron have been experimentally investigated in the temperature range from 1000 degreesC to 1300 degreesC (1273 to 1573 K). The liquidus surfaces in these pseudoternary sections have been experimentally determined in the composition range from 0 to 33 wt pct ZnO and 30 to 70 wt pct (CaO + SiO2). The sections contain primary-phase fields of wustite (FexZn1-xO1+y), zincite (ZnzFe1-zO), fayalite (Fu(w)Zn(2-w)SiO(4)), melilite (Ca2ZnuFe1-uSi2O7), willemite (ZnvFe2-vSiO4), dicalcium silicate (Ca2SiO4), pseudowollastonite and wollastonite (CaSiO3), and tridymite (SiO2). The phase equilibria involving the liquid phase and the solid solutions-have also been measured.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The pseudoternary section FeO-ZnO-(CaO + SiO2) with a CaO/SiO2 weight ratio of 0.71 in equilibrium with metallic iron has been experimentally investigated in the temperature range from 1000 degreesC to 1300 degreesC (1273 to 1573 K). The liquidus surface in this pseudoternary. section has been determined in the composition range of 0 to 33 wt pct ZnO and 30 to 70 wt pct (CaO + SiO2)The system contains primary-phase fields of wustite (FexZn1-xO1+y), zincite (ZnzFe1-zO), fayalite (FewZn2-wSiO4), melilite (Ca2ZnuFe1-uSi2O7), and pseudowollastonite (CaSiO3). The phase equilibria involving the liquid phase and the solid solutions have also been measured.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

50.00% 50.00%

Publicador:

Resumo:

An experimental study on the ternary system PbO-ZnO-SiO2, in air by high-temperature equilibration and quenching techniques followed by electron probe X-ray microanalysis was carried out as part of the wider research program on the six-component system PbO-ZnO-SiO2-CaO-FeO-Fe2O3, which combines experimental and thermodynamic computer modeling techniques to characterize zinc and lead industrial slags. Liquidus and solidus data were reported for all primary phase fields in the system PbO-ZnO-SiO2 in the temperature range 640 degrees C to 1400 degrees C (913 to 1673 K).

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Experimental studies on phase equilibria and liquidus in the multicomponent system PbO-ZnO-CaO-SiO2-FeO-Fe2O3 in air have been conducted over the temperature range between 1323 K (1050 degreesC) and 1623 K (1350 degreesC) to characterize the phase relations of the complex slag systems encountered in lead and zinc blast furnace sinters. The liquidus in two pseudoternary sections ZnO-Fe2O3-(PbO + CaO + SiO2) with the CaO/SiO2 weight ratio of 0.933 and PbO/(CaO + SiO2) weight ratios of 2.0 and 3.2 have been constructed.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this work, the effect of the indentation load on the results of hardness and fracture toughness, determined by Vickers micro-hardness measurements, of some glasses and glass-ceramics has been investigated. Furthermore, in order to verify the effect of crystallinity on the results, glasses of composition 52.75 wt.% 3CaO center dot P2O5, 30 wt.% SiO2 and 17.25 wt.% MgO were fused at 1600 degrees C for 4 h and annealed at 700 degrees C for 2h, and further heat-treated at 700, 775, 800 and 900 degrees C for 4h. The obtained materials were analyzed by high resolution X-ray diffraction, HRXRD, to determine the crystallization degree in function of the heat-treatment temperature. The hardness of the different specimens was determined by Vickers' micro-hardness measurements under various loads. It has been observed that with increasing crystallization of the materials their hardness increased. Furthermore, it has been possible to verify the so-called indentation size effect (ISE), i.e. hardness decreases as the indentation depth, under higher loads, increases. This effect has been more pronounced in the glass-ceramic samples. Fracture toughness has been determined by the crack length induced by the Vickers indentations and relating them to the applied loads. Glass materials presented a fracture pattern with characteristics of cleavage, forming cracks of the half-penny shaped type, while the glass-ceramic materials exhibited crack bridging effects and Palmqvist type cracks. (C) 2011 Elsevier B.V. All rights reserved.