913 resultados para Metal ion
Resumo:
The free metal ion concentrations obtained by SSCP (stripping chronopotentiometry at scanned deposition potential) and by AGNES (absence of gradients and Nernstian equilibrium stripping) techniques have been compared and the usefulness of the combination of both techniques in the same electrochemical cell for trace metal speciation analysis is assessed. The free metal ion concentrations and the stability constants obtained for lead(II) and cadmium(II) complexation by pyridinedicarboxylic acid, by 40 nm radius carboxylated latex nanospheres and by a humic acid extracted from an ombrotrophic peat bog were determined. Whenever possible, the free metal ion concentrations were compared with the theoretical predictions of the code MEDUSA and with the free metal ion concentrations estimated from ion selective electrodes (ISE). SSCP values were in agreement with the ones obtained by AGNES, and both of them agreed reasonably with the ISE values and the theoretical predictions. For the lead(II)-humic acid, it was not possible to obtain the stability constants by SSCP due to the heterogeneity effect. However, using AGNES it is possible to obtain, for these heterogeneous systems, the free bulk metal concentration, which allows us to retrieve the stability constant at bulk conditions.
Resumo:
The potential of permeation liquid membrane (PLM) to obtain dynamic metal speciation information for colloidal complexes is evaluated by measurements of lead(II) and copper(II) complexation by carboxyl modified latex nanospheres of different radii (15, 35, 40 and 65 nm). The results are compared with those obtained by a well characterized technique: stripping chronopotentiometry at scanned deposition potential (SSCP). Under the PLM conditions employed, and for large particles or macromolecular ligands, membrane diffusion is the rate-limiting step. That is, the flux is proportional to the free metal ion concentration with only a small contribution from labile complexes. In the absence of ligand aggregation in the PLM channels, good agreement was obtained between the stability constants determined by PLM and SSCP for both metals.
Resumo:
A lability criterion is developed for dynamic metal binding by colloidal ligands with convective diffusion as the dominant mode of mass transport. Scanned stripping chronopotentiometric measurements of Pb(II) and Cd(II) binding by carboxylated latex core-shell particles were in good agreement with the predicted values. The dynamic features of metal ion binding by these particles illustrate that the conventional approach of assuming a smeared-out homogeneous ligand distribution overestimates the lability of a colloidal ligand system. Due to the nature of the spatial distribution of the binding sites, the change in lability of a metal species with changing ligand concentration depends on whether the ligand concentration is varied via manipulation of the pH (degree of protonation) or via the particle concentration. In the former case the local ligand density varies, whereas in the latter case it is constant. This feature provides a useful diagnostic tool for the presence of geometrically constrained binding sites.
Resumo:
Dissertation presented to obtain a PhD degree in Biochemistry at Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa
Resumo:
Febs Journal (2009)276:1776-1786
Resumo:
The use of buffers to maintain the pH within a desired range is a very common practice in chemical, biochemical and biological studies. Among them, zwitterionic N-substituted aminosulfonic acids, usually known as Good’s buffers, although widely used, can complex metals and interact with biological systems. The present work reviews, discusses and updates the metal complexation characteristics of thirty one commercially available buffers. In addition, their impact on biological systems is also presented. The influences of these buffers on the results obtained in biological, biochemical and environmental studies, with special focus on their interaction with metal ions, are highlighted and critically reviewed. Using chemical speciation simulations, based on the current knowledge of the metal–buffer stability constants, a proposal of the most adequate buffer to employ for a given metal ion is presented.
Resumo:
Rates and products of the oxidation of diphenyl sulfide, phenyl methyl sulfide, p-chlorophenyl methyl sulfide and diphenyl sulfoxide have been determined. Oxidants included t-Bu02H alone, t-Bu02H plus molybdenum or vanadium catalysts and the molybdenum peroxo complex Mo0(02)2*HMPT. Reactions were chiefly carried out in ethanol at temperatures ranging from 20° to 65°C. Oxidation of diphenyl sulfide by t-Bu02H in absolute ethanol at 65°C followed second-order kinetics with k2 = 5.61 x 10 G M~1s"1, and yielded only diphenyl sulfoxide. The Mo(C0)g-catalyzed reaction gave both the sulfoxide and the sulfone with consecutive third-order kinetics. Rate = k3[Mo][t-Bu02H][Ph2S] + k^[Mo][t-Bu02H][Ph2S0], where log k3 = 12.62 - 18500/RT, and log k^ = 10.73 - 17400/RT. In the absence of diphenyl sulfide, diphenyl sulfoxide did not react with t-Bu02H plus molybdenum catalysts, but was oxidized by t-Bu02H-V0(acac)2. The uncatalyzed oxidation of phenyl methyl sulfide by t-Bu02H in absolute ethanol at 65°C gave a second-order rate constant, k = 3.48 x 10~"5 M^s""1. With added Mo(C0)g, the product was mainly phenyl methyl sulfoxide; Rate = k3[Mo][t-Bu02H][PhSCH3] where log k3 = 22.0 - 44500/RT. Both diphenyl sulfide and diphenyl sulfoxide react readily with the molybdenum peroxy complex, Mo0(02)2'HMPT in absolute ethanol at 35°C, yielding diphenyl sulfone. The observed features are mainly in agreement with the literature on metal ion-catalyzed oxidations of organic compounds by hydroperoxides. These indicate the formation of an active catalyst and the complexation of t-Bu02H with the catalyst. However, the relatively large difference between the activation energies for diphenyl sulfide and phenyl methyl sulfide, and the non-reactivity of diphenyl sulfoxide suggest the involvement of sulfide in the production of an active species.
Resumo:
This paper reports the synthesis of a series of six new polystyrene anchored metal complexes of Co(II), Fe(III), Ni(II), Cu(II), Zn(II), and dioxouanium(VI) using the polystyrene anchored Schiff base of 2-nitrobenzaldehyde and the corresponding metal salts. The metal salts used were anhydrous FeCl3, CoCl2 Æ 6H2O, Ni(CH3COO)2 Æ 4H2O, Cu(CH3- COO)2 Æ H2O, Zn(CH3COO)2 Æ 2H2O, and UO2(CH3COO) Æ 2H2O. Physico chemical characterizations have been made from diffuse reflectance and vibrational spectra, elemental analysis, magnetic measurements, and TG studies. The elemental analysis suggest a 1:2 metal:ligand ratio when the complexation has carried out at 70 C for about 12 h reflux. The ligand is monodentate and coordinates through the azomethine nitrogen. The Fe(III), Co(II), Ni(II), and Cu(II) complexes are all paramagnetic whereas Zn(II) and U(VI) are diamagnetic. Zn(II) is assigned a tetrahedral structure, Cu(II) and Co(II) are assigned a square planar structure and Fe(III), Ni(II), and U(VI) are all assigned an octahedral structure. The polystyrene anchored ligand has been developed as an excellent reagent for the removal of Cu(II). Optimum conditions have been developed for the removal of metal ion from solutions by studying the effect of change of concentration of metal ion, ligand, effect of pH, time of reflux, and interference effect of other ions. It was found that within a span of 20 min it is possible to remove 90% of the metal ion from a 30 ppm metal ion solution in the pH range 4–5.5.
Resumo:
In this regard Schiff base complexes have attracted wide attention. Furthermore, such complexes are found to play important role in analytical chemistry, organic synthesis, metallurgy, refining of metals, electroplating and photography. Many Schiff base complexes are reported in literature. Their properties depend on the nature of the metal ion as well as on the nature of the ligand. By altering the ligands it is possible to obtain desired electronic environment around the metal ion. Thus there is a continuing interest in the synthesis of simple and zeolite encapsulated Schiff base complexes of metal ions. Zeolites have a number of striking structural similarities to the protein portion of natural enzymes. Zeolite based catalysts are known for their remarkable ability of mimicking the chemistry of biological systems. In view of the importance of catalysts in all the areas of modern chemical industries, an effort has been made to synthesize some simple Schiff base complexes, heterogenize them by encapsulating within the supercages of zeoliteY cavities and to study their applications. The thesis deals with studies on the synthesis and characterization of some simple and zeoliteY encapsulated Mn(II), Fe(III), Co(II), Ni(II) and Cu(II) complexes and on the catalytic activity of these complexes on some oxidation reactions. Simple complexes were prepared from the Schiff base ligands SBT derived from 2-aminobenzothiazole and salicylaldehyde and the ligand VBT derived from 2-aminobenzothiazole and vanillin (4-hydroxy-3- methoxybenzaldehyde). ZeoliteY encapsulated Mn(II), Fe(III), Co(II), Ni(II) and Cu(II) complexes of Schiff base ligands SBT and VBT and also of 2-aminobenzothiazole were synthesized. All the prepared complexes were characterized using the physico-chemical techniques such as chemical analysis (employing AAS and CHN analyses), magnetic moment studies, conductance measurements and electronic and FTIR spectra. EPR spectra of the Cu(II) complexes were also carried out to know the probable structures and nature of Cu(II) complexes. Thermogravimetric analyses were carried out to obtain the information regarding the thermal stability of various complexes. The successful encapsulations of the complexes within the cavities of zeoliteY were ascertained by XRD, surface area and pore volume analysis. Assignments of geometries of simple and zeoliteY encapsulated complexes are given in all the cases. Both simple and zeoliteY encapsulated complexes were screened for catalytic activity towards oxidation reactions such as decomposition of hydrogen peroxide, oxidation of benzaldehyde, benzyl alcohol, 1-propanol, 2-propanol and cyclohexanol.
Resumo:
The thesis is an introduction to our attempts to evaluate the coordination behaviour of a few compounds of our interest. Semicarbazones and their metal complexes have been an active area of research during the past years because of the beneficial biological activities of these substances. Tridentate NNO semicarbazone systems formed from heterocyclic and aromatic carbonyl compounds and their transition metal complexes are well-authenticated compounds in this field and their synthesis and characterization are well desirable. Hence, we decided to develop a research program aimed at the synthesis and characterization of novel semicarbazones derived from 2-benzoylpyridine and 2-acetylpyridine and their transition metal complexes. In addition to various physicochemical methods of analysis, single crystal X—Ray diffraction studies were also used for the characterization of the complexes.
Resumo:
Polymer supports are efficient reagents,substrates and catalysts and they are extensively used for carrying out reactions at controlled rates.Tailor-made polymer supports are highly versatile which have opened an excellent area of research.Now polymer supported chemistry is being exploited at an amazing rate and it seems to join the routine world of organic synthesis.Polymer supported ligands are found to be efficient complexing agents whose high selectivity enables the analysis and removal of heavy metal ions which are toxic to all the living organisms of land and sea.polymer supported membranes function as ion selective potentiometric sensors which allow the exchange of specific ions among other ions of the same charge.In this investigation three series of polymeric schiff bases and three series of metal complexes have been prepared.An attempt is done to develop optimum conditions for the removal of heavy metal ions using polymeric schiff bases.A novel copper sensor electrode have also been prepared from polymer supported metal complex.
Resumo:
Polymer supports and polymeric complexes are highly versatile and they are successfully employed as efficient reagents, substrates and catalysts. Recently there observed a growing interest in the synthesis of tailor-made polymer supports and functionalized polymers for the preparation of metal complexes for various applications. They have the combination of properties due to the macromolecular structure as well as due to the reactivity of the functional group. An interesting feature of functional polymers is their affinity towards metal ions. Therefore the synthesis, characterization and application of such polymeric complexes have great scientific and analytical importance. In this investigation three series of polymeric complexes of transition metal ions are prepared from three schiff bases. All the complexes and polymeric schiff bases were characterized by analytical, spectral and thermal methods The thesis consist of six chapters. The first chapter contains an introduction and a brief review on application of polymer supports, polymer supported ligands and complexes. The second chapter gives the details of reagents and instruments used and the procedure adopted for the preparation of ligands and complexes. The third chapter explains the methods employed for characterization and the results are also discussed. The fourth chapter gives a detailed study of metal ion removal using ligands whereas the fifth chapter describes the development of the Cu” ion sensor electrode. The sixth chapter is the summary of the thesis and references are presented at the end.
Resumo:
The role of metal ions in determining the solution conformation of the Holliday junction is well established, but to date the picture of metal ion binding from structural studies of the four-way DNA junction is very incomplete. Here we present two refined structures of the Holliday junction formed by the sequence d(TCGGTACCGA) in the presence of Na+ and Ca2+, and separately with Sr2+ to resolutions of 1.85 Angstrom and 1.65 Angstrom, respectively. This sequence includes the ACC core found to promote spontaneous junction formation, but its structure has not previously been reported. Almost complete hydration spheres can be defined for each metal cation. The Na+ sites, the most convincing observation of such sites in junctions to date, are one on either face of the junction crossover region, and stabilise the ordered hydration inside the junction arms. The four Ca2+ sites in the same structure are at the CG/CG steps in the minor groove. The Sr2+ ions occupy the TC/AG, GG/CC, and TA/TA sites in the minor groove, giving ten positions forming two spines of ions, spiralling through the minor grooves within each arm of the stacked-X structure. The two structures were solved in the two different C2 lattices previously observed, with the Sr2+ derivative crystallising in the more highly symmetrical form with two-fold symmetry at its centre. Both structures show an opening of the minor groove face of the junction of 8.4degrees in the Ca2+ and Na+ containing structure, and 13.4degrees in the Sr2+ containing structure. The crossover angles at the junction are 39.3degrees and 43.3degrees, respectively. In addition to this, a relative shift in the base pair stack alignment of the arms of 2.3 Angstrom is observed for the Sr2+ containing structure only. Overall these results provide an insight into the so-far elusive stabilising ion structure for the DNA Holliday junction. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
The ligands 1,4,8,11-tetraazacyclotetradecane-1,4,8-triacetic-11-methylphosphonic acid (H(5)te3a1p) and 1,4,8,11-tetraazacyclotetradecane-1,4,8-triacetic acid (H(3)te3a) were synthesized, the former one for the first time. The syntheses of these ligands were achieved from reactions on 1,4,8,11-tetraazacyclotetradecane-1,4,8-tris( carbamoylmethyl) hydroiodide (te3am center dot HI), and compounds (Hte3am)(+), 1, and (H(7)te3a1p)(2+), 4, were characterized by X-ray diffraction. Structures of two other compounds resulting from side-reactions, (H(2)te2lac)(2+), 2, and (H(4)te2a2p(OEt2))(2+), 3, were also determined by X-ray diffraction. Potentiometric titrations of H(5)te3a1p and H(3)te3a were performed at 298.2 K and ionic strength 0.10 mol dm(-3) in NMe4NO3 to determine their protonation constants. H-1 and P-31 NMR titrations of H(5)te3a1p were carried out in order to determine the very high first protonation constant of this ligand and to elucidate the sequence of protonation. Potentiometric studies of the two ligands with Ca2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+ and Pb2+ metal ions performed in the same experimental conditions showed that the complexes of H5te3a1p present very high thermodynamic stability while complexes of H(3)te3a, particularly Co2+ and Zn2+, are even more stable. P-31 NMR spectra of the cadmium(II) complex of H(5)te3a1p showed that the phosphonate moiety was coordinated to the metal ion. The UV-vis-NIR spectroscopic data and magnetic moment values of Co2+ and Ni2+ complexes of H(5)te3a1p and H(3)te3a together with the EPR of the corresponding Cu2+ complexes indicated that all these complexes adopt distorted octahedral coordination geometries in solution. This was confirmed by the single crystal structure of [Cu-2(Hte3a)(H2O)(3)Cl]Cl-0.5(ClO4)(0.5) center dot 2H(2)O that showed two distorted octahedral copper centres bridged by a N-acetate pendant arm with a Cu center dot center dot center dot Cu distance of 4.890(1) angstrom. The first one is encapsulated into the macrocyclic cavity surrounded by four nitrogen and two oxygen donors from the macrocycle, whereas the second one is on the periphery of the macrocycle and is coordinated to two oxygen atoms of one acetate pendant arm in chelating fashion, one chloride and three water molecules.
Resumo:
New bifunctional pyrazole based ligands of the type [C3HR2N2CONR'] (where R = H or CH3; R' = CH3, C2H5, or (C3H7)-C-i) were prepared and characterized. The coordination chemistry of these ligands with uranyl nitrate and uranyl bis(dibenzoyl methanate) was studied with infrared (IR), H-1 NMR, electrospray-mass spectrometry (ES-MS), elemental analysis, and single crystal X-ray diffraction methods. The structure of compound [UO2(NO3)(2)(C3H3N2CON{C2H5}(2))] (2) shows that the uranium(VI) ion is surrounded by one nitrogen atom and seven oxygen atoms in a hexagonal bipyramidal geometry with the ligand acting as a bidentate chelating ligand and bonds through both the carbamoyl oxygen and pyrazolyl nitrogen atoms. In the structure of [UO2(NO3)(2)(H2O)(2)(C5H7N2CON {C2H5}(2))(2)], (5) the pyrazole figand acts as a second sphere ligand and hydrogen bonds to the water molecules through carbamoyl oxygen and pyrazolyl nitrogen atoms. The structure of [UO2(DBM)(2)C3H3N2CON{C2H5}(2)] (8) (where DBM = C6H5COCHCOC6H5) shows that the pyrazole ligand acts as a monodentate ligand and bonds through the carbamoyl oxygen to the uranyl group. The ES-MS spectra of 2 and 8 show that the ligand is similarly bonded to the metal ion in solution. Ab initio quantum chemical studies show that the steric effect plays the key role in complexation behavior.