974 resultados para Melt processing
Resumo:
Grafted GMA on EPR samples were prepared in a Thermo-Haake internal mixer by free radical melt grafting reactions in the absence (conventional system; EPR-g-GMA(CONV)) and presence of the reactive comonomer divinyl benzene, DVB (EPR-g-GMA(DVB)). The GMA-homopolymer (poly-GMA), a major side reaction product in the conventional system, was almost completely absent in the DVB-containing system, the latter also resulted in a much higher level of GMA grafting. A comprehensive microstructure analysis of the formed poly-GMA was performed based on one-dimensional H-1 and C-13 NMR spectroscopy and the complete spectral assignments were supported by two-dimensional NMR techniques based on long range two and three bond order carbon-proton couplings from HMBC (Heteronuclear Multiple Bond Coherence) and that of one bond carbon-proton couplings from HSQC (Heteronuclear Single Quantum Coherence), as well as the use of Distortionless Enhancement by Polarization Transfer (DEPT) NMR spectroscopy. The unambiguous analysis of the stereochemical configuration of poly-GMA was further used to help understand the microstructures of the GMA-grafts obtained in the two different free radical melt grafting reactions, the conventional and comonomer-containing systems. In the grafted GMA, in the conventional system (EPR-g-GMA(CONV)), the methylene protons of the GMA were found to be sensitive to tetrad configurational sequences and the results showed that 56% of the GMA sequence in the graft is in atactic configuration and 42% is in syndiotactic configuration whereas the poly-GMA was predominantly syndiotactic. The differences in the microstructures of the graft in the conventional EPR-g-GMA(CONV) and the DVB-containing (EPR-g-GMA(DVB)) systems is also reported (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Poly(L-lactide-co-ε-caprolactone) 75:25% mol, P(LL-co-CL), was synthesized via bulk ring-opening polymerisation (ROP) using a novel tin(II)alkoxide initiator, [Sn(Oct)]2DEG, at 130oC for 48 hrs. The effectiveness of this initiator was compared withthe well-known conventional tin(II) octoateinitiator, Sn(Oct)2. The P(LL-co-CL) copolymersobtained were characterized using a combination of analytical technique including: nuclear magnetic resonance spectroscopy (NMR), differential scanning calorimetry (DSC), thermogravimetry (TG) and gel permeation chromatography (GPC). The P(LL-co-CL) was melt-spun into monofilament fibres of uniform diameter and smooth surface appearance. Modification of the matrix morphology was then built into the as-spun fibresvia a series of controlled off-line annealing and hot-drawing steps. © (2014) Trans Tech Publications, Switzerland.
Resumo:
An overview of the antioxidant role of the biologically active form of vitamin E, α-tocopherol, in polyolefins is discussed. The effect of the vitamin antioxidant on the melt and colour stability of polyethylene (PE) and polypropylene (PP) is highlighted. It is shown that tocopherol is a highly effective antioxidant that results in superior melt stabilisation of polyolefins particularly when used at much lower concentration than that needed for conventional synthetic hindered phenol processing stabilisers. As with other hindered phenols,α-tocopherol imparts also some colour to the polymer but this is shown to be reduced drastically in the presence of other antioxidants, such as phosphites, or other additives, such as polyhydric alcohols.
Resumo:
A poly(L-lactide-co-caprolactone) copolymer, P(LL-co-CL), of composition 75:25 mol% was synthesized via the bulk ring-opening copolymerization of L-lactide and ε-caprolactone using a novel bis[tin(II) monooctoate] diethylene glycol coordination-insertion initiator, OctSn-OCH2CH2OCH2CH2O-SnOct. The P(LL-co-CL) copolymer obtained was characterized by a combination of analytical techniques, namely nuclear magnetic resonance spectroscopy, gel permeation chromatography, dilute-solution viscometry, differential scanning calorimetry, and thermogravimetric analysis. For processing into a monofilament fiber, the copolymer was melt spun with minimal draw to give a largely amorphous and unoriented as-spun fiber. The fiber's oriented semicrystalline morphology, necessary to give the required balance of mechanical properties, was then developed via a sequence of controlled offline hot-drawing and annealing steps. Depending on the final draw ratio, the fibers obtained had tensile strengths in the region of 200–400 MPa.
Resumo:
Engineered cocrystals offer an alternative solid drug form with tailored physicochemical properties. Interestingly, although cocrystals provide many new possibilities, they also present new challenges, particularly in regard to their design and large-scale manufacture. Current literature has primarily focused on the preparation and characterization of novel cocrystals typically containing only the drug and coformer, leaving the subsequent formulation less explored. In this paper we propose, for the first time, the use of hot melt extrusion for the mechanochemical synthesis of pharmaceutical cocrystals in the presence of a meltable binder. In this approach, we examine excipients that are amenable to hot melt extrusion, forming a suspension of cocrystal particulates embedded in a pharmaceutical matrix. Using ibuprofen and isonicotinamide as a model cocrystal reagent pair, formulations extruded with a small molecular matrix carrier (xylitol) were examined to be intimate mixtures wherein the newly formed cocrystal particulates were physically suspended in a matrix. With respect to formulations extruded using polymeric carriers (Soluplus and Eudragit EPO, respectively), however, there was no evidence within PXRD patterns of either crystalline ibuprofen or the cocrystal. Importantly, it was established in this study that an appropriate carrier for a cocrystal reagent pair during HME processing should satisfy certain criteria including limited interaction with parent reagents and cocrystal product, processing temperature sufficiently lower than the onset of cocrystal Tm, low melt viscosity, and rapid solidification upon cooling.
Resumo:
Rotomolded containers for solvents and hydrocarbons require the use of high-permeability resins such as polyamide (PA). The published studies with this material are very scarce. In this work, a commercial grade of PA11 was rotational-molded using different processing temperatures and characterized with a range of techniques. The study aims at investigating the influence of the processing conditions on the microstructure and properties of molded parts. The results showed that the spherulitic morphology and the mechanical properties are affected by the processing temperature, the optimum processing range being between 220°C and 240°C. Overheating causes a decrease of the impact strength and a severe increase in the formation of pinholes at the outer surface due to polymer degradation and formation of volatile products. The thermo-oxidation reactions occurring at the inner surface of the samples result in the formation of products that absorb in the UV and visible light regions and cause the microhardness and the melt viscosity of the material to increase. The extent and severity of the degradation at the inner surface may be easily assessed by fluorescence microscopy. © 2008 Wiley Periodicals, Inc.
Resumo:
In the casting of metals, tundish flow, welding, converters, and other metal processing applications, the behaviour of the fluid surface is important. In aluminium alloys, for example, oxides formed on the surface may be drawn into the body of the melt where they act as faults in the solidified product affecting cast quality. For this reason, accurate description of wave behaviour, air entrapment, and other effects need to be modelled, in the presence of heat transfer and possibly phase change. The authors have developed a single-phase algorithm for modelling this problem. The Scalar Equation Algorithm (SEA) (see Refs. 1 and 2), enables the transport of the property discontinuity representing the free surface through a fixed grid. An extension of this method to unstructured mesh codes is presented here, together with validation. The new method employs a TVD flux limiter in conjunction with a ray-tracing algorithm, to ensure a sharp bound interface. Applications of the method are in the filling and emptying of mould cavities, with heat transfer and phase change.