978 resultados para Mediterranean-type ecosystems
Resumo:
Cold seep ecosystems are highly productive, fragmented ecosystems of the deep-sea floor. They form worldwide where methane reaches the surface seafloor, and are characterized by rich chemosynthetic communities fueled by the microbial utilization of hydrocarbons. Here we investigated with in situ (benthic chamber, microprofiler) and ex situ (pore water constituents, turnover rates of sulfate and methane, prokaryote abundance) techniques reduced sites from three different seep ecosystems in the Eastern Mediterranean deep-sea. At all three cold seep systems, the Amon Mud Volcano, Amsterdam Mud Volcano and the Nile Deep Sea Fan Pockmark area, we observed and sampled patches of highly reduced, methane-seeping sulfidic sediments which were separated by tens to hundreds of (kilo)meters with non-reduced oxygenated seafloor areas. All investigated seep sites were characterized by gassy, sulfidic sediments of blackish color, of which some were overgrown with thiotrophic bacterial mats. Fluxes of methane and oxygen, as well as sulfate reduction rates varied between the different sites.
Resumo:
The present-day clay mineral distribution in the southeastern Levantine Sea and its borderlands reveals a complex pattern of different sources and distribution paths. Smectite dominates the suspended load of the Nile River and of rivers in the Near East. Illite sources are dust-bearing winds from the Sahara and southwestern Europe. Kaolinite is prevalent in rivers of the Sinai, in Egyptian wadis, and in Saharan dust. A high-resolution sediment core from the southeastern Levantine Sea spanning the last 27 ka shows that all these sources contributed during the late Quaternary and that the Nile River played a very important role in the supply of clay. Nile influence was reduced during the glacial period but was higher during the African Humid Period. In contrast to the sharp beginning and end of the African Humid Period recorded in West African records (15 and 5.5 ka), our data show a more transitional pattern and slightly lower Nile River discharge rates not starting until 4 ka. The similarity of the smectite concentrations with fluctuations in sea-surface temperatures of the tropical western Indian Ocean indicates a close relationship between the Indian Ocean climate system and the discharge of the Nile River.
Resumo:
Temporal and regional changes in paleoproductivity and paleoceanography in the eastern Mediterranean Sea during the past 12 kyr were reconstructed on the basis of the stable oxygen and carbon isotope composition of the epibenthic Planulina ariminensis and the shallow endobenthic Uvigerina mediterranea from three sediment cores of the Aegean Sea and Levantine Basin. The Younger Dryas is characterized by high d18O values, indicating enhanced salinities and low temperatures of deep water masses at all investigated sites. With the onset of the Holocene, d18O records show a continuous decrease towards the onset of sapropel S1 formation, mainly caused by a freshening and warming of surface waters at deep water formation sites. In the middle and late Holocene, the similarity of d18O values from the southern Aegean Sea and Levantine Basin suggests the influence of isotopically identical deep water masses. By contrast, slightly higher d18O values are observed the northern Aegean Sea, which probably point to lower temperatures of North Aegean deep waters. The epifaunal d13C records reveal clear changes in sources and residence times of eastern Mediterranean deep waters associated with period of S1 formation. Available data for the early and late phase of sapropel S1 formation and for the interruption around 8.2 kyr display drops by 0.5 and 1.5 per mil, indicating the slow-down of deep water circulation and enhanced riverine input of isotopically light dissolved inorganic carbon from terrestrial sources into the eastern Mediterranean Sea. The decrease in epifaunal d13C signals is particularly expressed in the southern Aegean Sea and Levantine Basin, while it is less pronounced in the northern Aegean Sea. This points to a strong reduction in deep water exchange rates in the southern areas, but the persistence of local deep water formation in the northern Aegean Sea. The d13C values of U. mediterranea records reveal temporal and regional differences in paleoproductivity during the past 12 kyr, with rather eutrophic and mesotrophic conditions in the North Aegean Sea and southeast Levantine Basin, respectively, while the South Aegean Sea is characterized by rather oligotrophic conditions. After S1 formation, increasing d13C values reflect a progressive decrease in surface water productivity in the eastern Mediterranean Sea during the middle and late Holocene. In the northern Aegean Sea, this time interval is marked by repetitive changes in organic matter fluxes documented by significant fluctuations in the d13C signal of U. mediterranea on millennial- to multi-centennial time scales. These fluctuations can be linked to short-term changes in river runoff driven by northern hemisphere climatic variability.
Resumo:
In a gravity core from the eastern Mediterranean Sea, a chemically and mineralogically distinct, 5.5-cm-thick layer is present above sapropel S-1 and overlain by hemipelagic marls. Calcite is completely absent in this exotic layer, dolomite is present only in small amounts, and the Cr concentrations are significantly enhanced. The layer was deposited primarily under reducing conditions, but the distributions of redox-sensitive elements show that a large part of the exotic layer is now oxidised by a downward-progressing oxidation front. Sediments from within the nearby anoxic, hypersaline Urania Basin are similar to those from the exotic layer, in particular in S-, C-, and O-isotope distributions of pyrite and dolomite, as well as increased Cr concentrations. Mud expulsion due to expansion of gas-rich mud is proposed to explain the presence of the exotic layer outside the Urania Basin. The deposition of an anoxic layer above S-1 shielded the sapropel from oxidation which resulted in the rare occurrence of a complete preservation of S-1 and provides the first minimum age for the start of anoxic mud accumulation in the Urania Basin.
Resumo:
Continuous sedimentary records from an eastern Mediterranean cold-water coral ecosystem thriving in intermediate water depths (~600 m) reveal a temporary extinction of cold-water corals during the Early to Mid Holocene from 11.4-5.9 cal kyr BP. Benthic foraminiferal assemblage analysis shows low-oxygen conditions of 2 ml l**-1 during the same period, compared to bottom-water oxygen values of 4-5 ml l**-1 before and after the coral-free interval. The timing of the corals' demise coincides with the sapropel S1 event, during which the deep eastern Mediterranean basin turned anoxic. Our results show that during the sapropel S1 event low oxygen conditions extended to the rather shallow depths of our study site in the Ionian Sea and caused the cold-water corals temporary extinction. This first evidence for the sensitivity of cold-water corals to low oceanic oxygen contents suggests that the projected expansion of tropical oxygen minimum zones resulting from global change will threaten cold-water coral ecosystems in low latitudes in the same way that ocean acidification will do in the higher latitudes.
Resumo:
Alkenone unsaturation ratios and planktonic delta18O records from sediment cores of the Alboran, Ionian and Levantine basins in the Mediterranean Sea show pronounced variations in paleo-temperatures and -salinities of surface waters over the last 16,000 years. Average sea surface temperatures (SSTs) are low during the last glacial (averages prior to 13,000 years: 11-15°C), vary rapidly at the beginning of the Holocene, and increase to 17-18°C at all sites during S1 formation (dated between 9500 and 6600 calendar years). The modern temperature gradient (2-3°C) between the Mediterranean sub-basins is maintained during formation of sapropel S1 in the Eastern Mediterranean Sea. After S1, SSTs have remained uniform in the Alboran Sea at 18°C and have fluctuated around 20°C in the Ionian and Levantine Basin sites. The delta18O of planktonic foraminifer calcite decreases by 2 per mil from the late glacial to S1 sediments in the Ionian Basin and by 2.8 per mil in the Levantine Basin. In the Alboran Sea, the decrease is 1.7 per mil. Of the 2.8 per mil decrease in the Levantine Basin, the effect of global ice volume accounts for a maximum of 1.05 per mil and the temperature increase explains only a maximum of 1.3 per mil. The remainder is attributed to salinity changes. We use the temperature and salinity estimates to calculate seawater density changes. They indicate that a reversal of water mass circulation is not a likely explanation for increased carbon burial during S1 time. Instead, it appears that intermediate and deep water formation may have shifted to the Ionian Sea approximately 2000 years before onset of S1 deposition, because surface waters were as cold, but saltier than surface water in the Levantine Basin during the Younger Dryas. Sapropel S1 began to form at the same time, when a significant density decrease also occurred in the Ionian Sea.
Resumo:
We present grain-size distributions of the terrigenous fraction of two sediment cores from the southeast Levantine Sea (SL112) and the northern Aegean Sea (SL148), spanning the time interval from the late glacial to the present. End-member modelling of the grain-size distribution allows discriminating between aeolian and fluvial transport of the sediments and helps to infer palaeoenvironmental conditions in the source areas. Sedimentary and depositional processes during the late glacial and Holocene were controlled by climatic variations of both the northern high latitudes and the African climate system. The sedimentation at site SL112 off Israel is dominated by the suspension load of the River Nile and aeolian dust from the Sahara. Variations in grain size reflect the early to mid- Holocene climate transition from the African Humid Period to recent arid conditions. This climate change was gradual, in contrast to the abrupt humidity change documented inWestern Saharan records. This implies a successive decrease in Nile river sediment supply due to a step-wise aridification of the headwaters. The grain-size data of SL112 show a humidity maximum at 5 kyr BP coincident with a regionally-restricted wet phase in the Levantine Sea. The sediments at the North Aegean site SL148 consist of riverine particles and low amounts of aeolian dust, probably derived from South European sources and with probably minor Saharan influence. The sedimentation processes are controlled by climate conditions being characterized by enhanced deposition of dust during the cold and dry glacial period and by decreased aeolian influx during the temperate and humid Holocene.
Resumo:
The geochemistry of the youngest Mediterranean sapropel layer suggests changes in productivity and water column oxygen conditions during sapropel deposition. The Ba-enriched interval is broader than the organic-carbon-rich interval of this sapropel. We suggest that the Ba-enriched horizon records the original thickness of the sapropel prior to subsequent partial oxidation. The main carrier of Ba is barite, as microcrystals (0.5-5 µm ) having a morphology characteristic of marine barite, particularly abundant beneath high productivity regions. Ba concentrations do not change at the sapropel layer oxidation front and diagenetic barite crystals are absent, thus the Ba-enriched layer reflects original oceanic conditions of increased biological productivity during sapropel deposition and not diagenetic Ba remobilization. Paleoredox indicators point to restricted oxygenated bottom water but not to fully anoxic conditions. Detrital elements within this layer indicate a lower eolian terrigenous input, enhanced humidity, and increased precipitation/runoff, thus likely higher nutrient supply.
Resumo:
We investigated five time-equivalent core sections (180-110 kyr BP) from the Balearic Sea (Menorca Rise), the easternmost Levantine Basin and southwest, south, and southeast of Crete to reconstruct spatial patterns of productivity during deposition of sapropels S5 and S6 in the Mediterranean Sea. Our indicators are Ba, total organic carbon and carbonate contents. We found no indications of Ba remobilization within the investigated core intervals, and used the accumulation rate of biogenic Ba to compute paleoproductivity. Maximum surface water productivity (up to 350 g C/m2/yr) was found during deposition of S5 (isotope stage 5e) but pronounced spatial variability is evident. Coeval sediment intervals in the Balearic Sea show very little productivity change, suggesting that chemical and biological environments in the eastern and western Mediterranean basins were decoupled in this interval. We interpret the spatial variability as the result of two different modes of nutrient delivery to the photic zone: riverderived nutrient input and shoaling of the pycnocline/nutricline to the photic zone. The productivity increase during the formation of S6 was moderate compared to S5 and had a less marked spatial variability within the study area of the eastern Mediterranean Sea. Given that S6 formed during a glacial interval, glacial boundary conditions such as high wind stress and/or cooler surface water temperatures apparently favored lateral and vertical mixing and prevented the development of the spatial gradients within the Eastern Mediterranean Sea (EMS) observed for S5. A non-sapropel sediment interval with elevated Ba content and depleted 18O/16O ratios in planktonic foraminifer calcite was detected between S6 and S5 that corresponds to the weak northern hemisphere insolation maximum at 150 kyr. At this time, productivity apparently increased up to five times over surrounding intervals, but abundant benthic fauna show that the deep water remained oxic. Following our interpretation, the interval denotes a failed sapropel, when a weaker monsoon did not force the EMS into permanent stratification. The comparison of interglacial and glacial sapropels illustrates the relevance of climatic boundary conditions in the northern catchment in determining the facies and spatial variability of sapropels within the EMS.
Resumo:
Total mercury concentration in waters of the Atlantic Ocean and Mediterranean Sea measured in January-April 1982 varied from 0.007 to 0.192 µg/l. Particulate form was 1.6-16% of dissolved form. Inorganic mercury accounted for 16-67% of dissolved mercury. Total mercury concentration in the surface film was 0.74-1.85 µg/l, 10-40 times higher than in seawater. Concentration of particulate form in the film was from 100 to 400 times higher than in seawater.