897 resultados para Medical image analysis
Resumo:
In this paper, we propose a new method for fully-automatic landmark detection and shape segmentation in X-ray images. To detect landmarks, we estimate the displacements from some randomly sampled image patches to the (unknown) landmark positions, and then we integrate these predictions via a voting scheme. Our key contribution is a new algorithm for estimating these displacements. Different from other methods where each image patch independently predicts its displacement, we jointly estimate the displacements from all patches together in a data driven way, by considering not only the training data but also geometric constraints on the test image. The displacements estimation is formulated as a convex optimization problem that can be solved efficiently. Finally, we use the sparse shape composition model as the a priori information to regularize the landmark positions and thus generate the segmented shape contour. We validate our method on X-ray image datasets of three different anatomical structures: complete femur, proximal femur and pelvis. Experiments show that our method is accurate and robust in landmark detection, and, combined with the shape model, gives a better or comparable performance in shape segmentation compared to state-of-the art methods. Finally, a preliminary study using CT data shows the extensibility of our method to 3D data.
Resumo:
PURPOSE The purpose of this study was to identify morphologic factors affecting type I endoleak formation and bird-beak configuration after thoracic endovascular aortic repair (TEVAR). METHODS Computed tomography (CT) data of 57 patients (40 males; median age, 66 years) undergoing TEVAR for thoracic aortic aneurysm (34 TAA, 19 TAAA) or penetrating aortic ulcer (n = 4) between 2001 and 2010 were retrospectively reviewed. In 28 patients, the Gore TAG® stent-graft was used, followed by the Medtronic Valiant® in 16 cases, the Medtronic Talent® in 8, and the Cook Zenith® in 5 cases. Proximal landing zone (PLZ) was in zone 1 in 13, zone 2 in 13, zone 3 in 23, and zone 4 in 8 patients. In 14 patients (25%), the procedure was urgent or emergent. In each case, pre- and postoperative CT angiography was analyzed using a dedicated image processing workstation and complimentary in-house developed software based on a 3D cylindrical intensity model to calculate aortic arch angulation and conicity of the landing zones (LZ). RESULTS Primary type Ia endoleak rate was 12% (7/57) and subsequent re-intervention rate was 86% (6/7). Left subclavian artery (LSA) coverage (p = 0.036) and conicity of the PLZ (5.9 vs. 2.6 mm; p = 0.016) were significantly associated with an increased type Ia endoleak rate. Bird-beak configuration was observed in 16 patients (28%) and was associated with a smaller radius of the aortic arch curvature (42 vs. 65 mm; p = 0.049). Type Ia endoleak was not associated with a bird-beak configuration (p = 0.388). Primary type Ib endoleak rate was 7% (4/57) and subsequent re-intervention rate was 100%. Conicity of the distal LZ was associated with an increased type Ib endoleak rate (8.3 vs. 2.6 mm; p = 0.038). CONCLUSIONS CT-based 3D aortic morphometry helps to identify risk factors of type I endoleak formation and bird-beak configuration during TEVAR. These factors were LSA coverage and conicity within the landing zones for type I endoleak formation and steep aortic angulation for bird-beak configuration.
Resumo:
We report on metal enrichment along a natural pH gradient owing to increased CO2 degassing at cold, shal- low seeps of Vulcano Island in the Mediterranean Sea, off Sicily. We assessed composition of unfiltered and filtered seawater (b100 nm) along acidic zones ranging between ambient and pH 5, and showed that most seep derived elements are present as nanoclusters which then aggregate into larger colloids while mixing with ambient seawater along a pH gradient. Size and elemental composition of such naturally occurring nanoparticles assessed by modern characterisation methods were in good agreement with the results from conventional analytical methods. We provide analytical evidence for the presence in the water column of a large fraction of seep derived ele- ments (e.g. approximately 50% of iron, over 80% of Mn, 100% of Cr, S and Zn) in the form of nano sized par- ticles (e.g. b100 nm) even at typical open ocean pHs. We launch in situ sampling protocols and sample preparation procedures for multi-method suitable to obtain accurate measurements on nanoparticles from environmental samples. Based on our results a first insight to the formation of natural nanoparticles at cold CO2 seeps is presented and the persistence of such nano-clusters in the surrounding seawater is stipulated.
Resumo:
ENVISAT ASAR WSM images with pixel size 150 × 150 m, acquired in different meteorological, oceanographic and sea ice conditions were used to determined icebergs in the Amundsen Sea (Antarctica). An object-based method for automatic iceberg detection from SAR data has been developed and applied. The object identification is based on spectral and spatial parameters on 5 scale levels, and was verified with manual classification in four polygon areas, chosen to represent varying environmental conditions. The algorithm works comparatively well in freezing temperatures and strong wind conditions, prevailing in the Amundsen Sea during the year. The detection rate was 96% which corresponds to 94% of the area (counting icebergs larger than 0.03 km**2), for all seasons. The presented algorithm tends to generate errors in the form of false alarms, mainly caused by the presence of ice floes, rather than misses. This affects the reliability since false alarms were manually corrected post analysis.
Resumo:
Providing accurate maps of coral reefs where the spatial scale and labels of the mapped features correspond to map units appropriate for examining biological and geomorphic structures and processes is a major challenge for remote sensing. The objective of this work is to assess the accuracy and relevance of the process used to derive geomorphic zone and benthic community zone maps for three western Pacific coral reefs produced from multi-scale, object-based image analysis (OBIA) of high-spatial-resolution multi-spectral images, guided by field survey data. Three Quickbird-2 multi-spectral data sets from reefs in Australia, Palau and Fiji and georeferenced field photographs were used in a multi-scale segmentation and object-based image classification to map geomorphic zones and benthic community zones. A per-pixel approach was also tested for mapping benthic community zones. Validation of the maps and comparison to past approaches indicated the multi-scale OBIA process enabled field data, operator field experience and a conceptual hierarchical model of the coral reef environment to be linked to provide output maps at geomorphic zone and benthic community scales on coral reefs. The OBIA mapping accuracies were comparable with previously published work using other methods; however, the classes mapped were matched to a predetermined set of features on the reef.
Resumo:
Managing large medical image collections is an increasingly demanding important issue in many hospitals and other medical settings. A huge amount of this information is daily generated, which requires robust and agile systems. In this paper we present a distributed multi-agent system capable of managing very large medical image datasets. In this approach, agents extract low-level information from images and store them in a data structure implemented in a relational database. The data structure can also store semantic information related to images and particular regions. A distinctive aspect of our work is that a single image can be divided so that the resultant sub-images can be stored and managed separately by different agents to improve performance in data accessing and processing. The system also offers the possibility of applying some region-based operations and filters on images, facilitating image classification. These operations can be performed directly on data structures in the database.
Resumo:
We propose to directly process 3D + t image sequences with mathematical morphology operators, using a new classi?cation of the 3D+t structuring elements. Several methods (?ltering, tracking, segmentation) dedicated to the analysis of 3D + t datasets of zebra?sh embryogenesis are introduced and validated through a synthetic dataset. Then, we illustrate the application of these methods to the analysis of datasets of zebra?sh early development acquired with various microscopy techniques. This processing paradigm produces spatio-temporal coherent results as it bene?ts from the intrinsic redundancy of the temporal dimension, and minimizes the needs for human intervention in semi-automatic algorithms.
Resumo:
Digital atlases of animal development provide a quantitative description of morphogenesis, opening the path toward processes modeling. Prototypic atlases offer a data integration framework where to gather information from cohorts of individuals with phenotypic variability. Relevant information for further theoretical reconstruction includes measurements in time and space for cell behaviors and gene expression. The latter as well as data integration in a prototypic model, rely on image processing strategies. Developing the tools to integrate and analyze biological multidimensional data are highly relevant for assessing chemical toxicity or performing drugs preclinical testing. This article surveys some of the most prominent efforts to assemble these prototypes, categorizes them according to salient criteria and discusses the key questions in the field and the future challenges toward the reconstruction of multiscale dynamics in model organisms.
Resumo:
Clasificación de una imagen de alta resolución "Quickbird" con la técnica de análisis de imágenes en base a objetos.
Resumo:
Clasificación de una imagen de alta resolución "Quickbird" con la técnica de análisis de imágenes en base a objetos
Resumo:
Images acquired during free breathing using first-pass gadolinium-enhanced myocardial perfusion magnetic resonance imaging (MRI) exhibit a quasiperiodic motion pattern that needs to be compensated for if a further automatic analysis of the perfusion is to be executed. In this work, we present a method to compensate this movement by combining independent component analysis (ICA) and image registration: First, we use ICA and a time?frequency analysis to identify the motion and separate it from the intensity change induced by the contrast agent. Then, synthetic reference images are created by recombining all the independent components but the one related to the motion. Therefore, the resulting image series does not exhibit motion and its images have intensities similar to those of their original counterparts. Motion compensation is then achieved by using a multi-pass image registration procedure. We tested our method on 39 image series acquired from 13 patients, covering the basal, mid and apical areas of the left heart ventricle and consisting of 58 perfusion images each. We validated our method by comparing manually tracked intensity profiles of the myocardial sections to automatically generated ones before and after registration of 13 patient data sets (39 distinct slices). We compared linear, non-linear, and combined ICA based registration approaches and previously published motion compensation schemes. Considering run-time and accuracy, a two-step ICA based motion compensation scheme that first optimizes a translation and then for non-linear transformation performed best and achieves registration of the whole series in 32 ± 12 s on a recent workstation. The proposed scheme improves the Pearsons correlation coefficient between manually and automatically obtained time?intensity curves from .84 ± .19 before registration to .96 ± .06 after registration
Resumo:
The genus Diplotaxis, comprising 32 or 34 species, plus several additional infraspecific taxa, displays a considerable degree of heterogeneity in the morphology, molecular markers, chromosome numbers and geographical amplitude of the species. The taxonomic relationships within the genus Diplotaxis were investigated by phenetic characterisation of germplasm belonging to 27 taxa of the genus, because there is an increasing interest in Diplotaxis, since some of its species (D. tenuifolia, D. muralis) are gathered or cultivated for human consumption, whereas others are frequent arable weeds (D. erucoides) in many European vineyards. Using a computer-aided vision system, 33 morpho-colorimetric features of seeds were electronically measured. The data were used to implement a statistical classifier, which is able to discriminate the taxa within the genus Diplotaxis, in order to compare the resulting species grouping with the current infrageneric systematics of this genus. Despite the high heterogeneity of the samples, due to the great intra-population variability, the stepwise Linear Discriminant Analysis method, applied to distinguish the groups, was able to reach over 80% correct identification. The results obtained allowed us to confirm the current taxonomic position of most taxa and suggested the taxonomic position of others for reconsideration.