921 resultados para Mechanics.
Resumo:
Hot Dip Aluminized Coatings with different thickness were prepared on Q235 steel in aluminum solutions with different temperature for certain time. Through tensile tests and in-situ SEM observations, the effect of the coating's microstructure on the tensile strength of the samples was studied. It was disclosed at certain aluminum solution temperature,transaction layers mainly composed of Fe2 Al5 phase got thicker with time prolonging, and this changed initial crack's extending direction from parallel with to vertical with stretching direction. The change in crack direction decreased tensile strength of samples, thus made the coating easy to break. It was concluded that the existence of thick Fe2 Al5 phase layer was the basic reason for the lowering of tensile strength of the coating.
Resumo:
A fractal approach was proposed to investigate the meso structures and size effect of metallic foams: For a series At foams of different relative densities, the information dimension method was applied to measure meso structures. The generalized sierpinski carpet was introduced to map the meso structures of the foam according to specific dimension. The results show that the fractal-based model can not only reveal the variation of yield strength with specimen size, but also bridge the meso structures and mechanical proper-ties of Al foams directly. Key words: metallic foams; fractal; size effect; meso structures
Resumo:
《中国力学学会史》是《中国学会史丛书》之一。是一部全面系统记述中国力学学会建立与发展历程的专著。 《中国力学学会史》全书30万字,书中不但重点对学会的初创情况、发展过程、组织建设、学术交流、分支机构等进行了专门介绍,还特别收录了记述学会重大活动情况的大事记、名人与学会发展的丰富资料和一些极有史料价值的历史照片,旨在反映学会在不同时期的活动概况及其在中国力学界中发挥的桥梁与纽带作用。 中国力学学会是中国科协的组成部分,也是我国著名的学术团体之一,仅以此书的编著出版,纪念中国科协成立50周年和中国力学学会成立50多周年。本书可供力学界和科技界有关部门及工作者、各学会相关人员、大专院校师生参阅,也可作为组织和开展国内外学术交流研究的参考资料。
Resumo:
We consider adhesive contact between a rigid sphere of radius R and a graded elastic half-space with Young's modulus varying with depth according to a power law E = E-0(z/c(0))(k) (0 < k < 1) while Poisson's ratio v remaining a constant. Closed-form analytical solutions are established for the critical force, the critical radius of contact area and the critical interfacial stress at pull-off. We highlight that the pull-off force has a simple solution of P-cr= -(k+3)pi R Delta gamma/2 where Delta gamma is the work of adhesion and make further discussions with respect to three interesting limits: the classical JKR solution when k = 0, the Gibson solid when k --> 1 and v = 0.5, and the strength limit in which the interfacial stress reaches the theoretical strength of adhesion at pull-off. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
As a basic tool of modern biology, sequence alignment can provide us useful information in fold, function, and active site of protein. For many cases, the increased quality of sequence alignment means a better performance. The motivation of present work is to increase ability of the existing scoring scheme/algorithm by considering residue–residue correlations better. Based on a coarse-grained approach, the hydrophobic force between each pair of residues is written out from protein sequence. It results in the construction of an intramolecular hydrophobic force network that describes the whole residue–residue interactions of each protein molecule, and characterizes protein's biological properties in the hydrophobic aspect. A former work has suggested that such network can characterize the top weighted feature regarding hydrophobicity. Moreover, for each homologous protein of a family, the corresponding network shares some common and representative family characters that eventually govern the conservation of biological properties during protein evolution. In present work, we score such family representative characters of a protein by the deviation of its intramolecular hydrophobic force network from that of background. Such score can assist the existing scoring schemes/algorithms, and boost up the ability of multiple sequences alignment, e.g. achieving a prominent increase (50%) in searching the structurally alike residue segments at a low identity level. As the theoretical basis is different, the present scheme can assist most existing algorithms, and improve their efficiency remarkably.
Resumo:
The molecular mechanics property is the foundation of many characters of proteins. Based on intramolecular hydrophobic force network, the representative family character underlying a protein’s mechanics property is described by a simple two-letter scheme. The tendency of a sequence to become a member of a protein family is scored according to this mathematical representation. Remote homologs of the WW-domain family could be easily designed using such a mechanistic signature of protein homology. Experimental validation showed that nearly all artificial homologs have the representative folding and bioactivity of their assigned family. Since the molecular mechanics property is the only consideration in this study, the results indicate its possible role in the generation of new members of a protein family during evolution.
Resumo:
本书系统地介绍了材料微尺度力学行为的尺寸效应实验现象,重点介绍了几种代表性的微尺度应变梯度塑性理论及对微尺度实验现象的解释;以及对裂纹尖端微尺度范围内解理断裂的应用。融会贯通的介绍了国内外学者的原创性工作和创新性学术思想。 全书共8章。第1章介绍了应变梯度塑性理论的应用背景及经典微极理论;第2章介绍了金属材料典型的微尺度力学实验现象;第3~7章介绍了几种典型的应变梯度理论及其应用;第8章介绍了应变梯度理论在微观断裂力学中的应用。 本书适合从事固体微尺度力学、先进材料的微结构设计与力学性能优化、微机电和微电子元件力学行为研究的科技工作者及工程师使用和参考,也可供力学专业及材料专业的高年级本科生和研究生阅读参考。
Resumo:
Since 2001, a research group in the Institute of Mechanics, Chinese Academy of Sciences, has been devoted to the research of essential mechanics issues for submerged floating tunnel (SFT). In addition to the structural design of the SFT prototype in Qiandao Lake, the relevant researches cover a number of topics. This paper briefly describes the research procedure and results, including dynamic response of SFT due to surface wave, vortex-induced vibration of anchoring system, structural analysis of curved SFT, temperature effects of curved SFT, structural dynamic response due to accidental load, and effects of structural parameters (buoyancy-weight ratio, tunnel length,tether stiffness,etc.) on dynamic response.