920 resultados para Mechanical stress


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O grafeno é a primeira estrutura bidimensional que se obteve experimentalmente. Sua rede cristalina é uma rede hexagonal, conhecida como "Favo de Mel", possui apenas um átomo de espessura. Cortes em folhas de grafeno, privilegiando determinada direção, geram as chamadas nanofitas de grafeno. Embora o grafeno se comporte como um metal, é sabido que as nanofitas podem apresentar comportamentos semicondutor, metálico ou semimetálico, dependendo da direção de corte e/ou largura da fita. No caso de nanofitas semicondutoras, a largura da banda proibida (band gap), entre outros fatores, depende da largura da nanofita. Neste trabalho adotou-se métodos de primeiros princípios como o DFT (Density Functional Theory), afim de se obter as características tais como curvas de dispersão para nanofitas. Neste trabalho, primeiramente, são apresentados diagramas de bandas de energia e curvas de densidade de estados para nanofitas de grafeno semicondutoras, de diferentes larguras, e na ausência de influências externas. Utilizou-se métodos de primeiros princípios para a obtenção destas curvas e o método das funções de Green do Não Equilíbrio para o transporte eletrônico. Posteriormente foi investigado a influência da hidrogenização, temperatura e tensão mecânica sobre sistema, isso além, de se estudar o comportamento de transporte eletrônico com e sem influência destes fatores externos. Vale ressaltar que as nanofitas de grafeno apresentam possibilidades reais de aplicação em nanodispositivos eletrônicos, a exemplo de nanodiodos e nanotransistores. Por esse motivo, é importante se ter o entendimento de como os fatores externos alteram as propriedades de tal material, pois assim, espera-se que as propriedades de dispositivos eletrônicos também sejam influenciadas da mesma maneira que as nanofitas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In prosthesis, tribochemical reactions occur at the stem/bone interface. When coupled with micromotions it can lead to the loosening of the implant, osteolysis, release of metal ion and wear particles. The effect of these movements and the underlying mechanisms are quite unknown. This work investigates the tribocorrosion behavior of etched Ti6Al4V alloys under reciprocating sliding. Tests were performed in a phosphate buffer solution (PBS) containing proteins. A normal load of 1 N and anodic potentials of -0.1 and +0.5 V/SCE were applied. The destruction pathways of the top surface layers (adsorbed proteins, passive film) were studied. The results showed that the favorable/undesired effect of proteins in solution depends on the characteristics of the passive film under a mechanical stress. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The increasing demand for electrical energy and the difficulties involved in installing new transmission lines presents a global challenge. Transmission line cables need to conduct more current, which creates the problem of excessive cable sag and limits the distance between towers. Therefore, it is necessary to develop new cables that have low thermal expansion coefficients, low densities, and high resistance to mechanical stress and corrosion. Continuous fiber-reinforced polymers are now widely used in many industries, including electrical utilities, and provide properties that are superior to those of traditional ACSR (aluminum conductor steel reinforced) cables. Although composite core cables show good performance in terms of corrosion, the contact of carbon fibers with aluminum promotes galvanic corrosion, which compromises mechanical performance. In this work, three different fiber coatings were tested (phenol formaldehyde resin, epoxy-based resin, and epoxy resin with polyester braiding), with measurements of the galvanic current. The use of epoxy resin combined with polyester braiding provided the best inhibition of galvanic corrosion. Investigation of thermal stability revealed that use of phenol formaldehyde resin resulted in a higher glass transition temperature. On the other hand, a post-cure process applied to epoxy-based resin enabled it to achieve glass transition temperatures of up to 200 degrees C. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work is the production of two types of particle boards reconstructed MDP (Medium Density Particleboard), the first with the addition, in the inner layer of particles of impregnated paper, the ratios of 0%, 1%, 5% and 20 %. In the second type of panel MDP was inserted with blades of bamboo species Dendrocalumus giganteus as coatings and structural reinforcement. The MDP panel, used as a basis for both cases has the composition of three layers, two external particles with smaller particle size and an inner layer composed of particles of larger particle sizes. Assays were performed based on physical and mechanical NBR 14.810/2006 for the determination of the board density, thickness swelling, water absorption, moisture content, bending, tension parallel and perpendicular, and testing of particle sizes of the particles did not exists in standard references. The results were analyzed and compared the results of the commercial boards made from 100% eucalyptus, based on the limits specified by the ABNT NBR 14.810/2006. The values of the tests showed similar results indicating normative specifications in a positive way, the possibility of production of MDP with the use of waste paper impregnated. As for the panel with bamboo blades, the tests showed a mechanical performance far superior to MDP market, explaining the study and possible implementation of the bamboo for use where the MDP will suffer greater mechanical stress, such as doors, tops and benches tables

Relevância:

60.00% 60.00%

Publicador:

Resumo:

After confirming the high specific mechanical properties of composite materials by scientific studies conducted over the last decades, one of the challenges of this new class of materials is the ability to achieve mass production at a more affordable cost, which has become indispensable. The Resin Transfer Molding (RTM) is an excellent method for manufacturing composite materials. Despite being a process widely used by international companies in the production of high performance structural composites, only a short time the national aviation industry has shown interest in implementing this type of processing to more complex structures and greater structural responsibility. In aeronautical projects, the reproducibility and the relative low cost of this process, several studies have been performed in Brazil for learning and perfecting this technique. This process is suitable for producing polymer components both simple as complex geometry, and allows to achieve consistent thickness, with high quality finish and without limiting range. Polymeric composite components for the high mechanical stress applications such as aircraft structures, satellites, etc., require a strict control of volume fractions of the composite constituents, beyond the knowledge of their mechanical and thermal properties. Therefore, in this experimental work degree study on the mechanical, thermal and of porosity composites processed by RTM processed characterization was performed. This characterization was performed targeting a possible aerospace application of this composite material. For the production of composites, process equipment (RTM RTM injector Radius 2100cc) was used. The processed carbono/epoxy composites were characterized via flexure tests mechanically and thermally analysis via DMA, DSC and TGA. To determine the volume fraction of fibers, the composite samples were analyzed via matrix digestion (ASTM D3171) ... (Complete abstract click electronic access below)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In recent years, increasing demand for energy has led to studies to increase the amount of electricity produced. Due to this fact, more and more boilers are becoming important sources of electricity generation. To raise the efficiency of energy generated in the boilers is necessary to raise the steam pressure and temperature to values previously unimaginable. The use of more resistant materials and maintenance practices and most appropriate operation made it possible. The objective of this study is to test the main types of failure in a chemical recovery boiler, in particular due to fatigue in the superheater, because it is a component subjected to high temperatures and thus more subject to different failures. In this manner this study aims to reduce the incidence of unscheduled maintenance shutdowns, increasing the operation time under appropriate conditions. Modeling performed in this study, the failure did not occur, because we considered only the mechanical stress. Under normal conditions, mechanical stress in combination with thermal stresses can cause cracks in the tubes due to cyclical stresses, leading to fatigue failure

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)