935 resultados para Mechanical engineers
Resumo:
An analysis of large deformations of flexible membrane structures within the tension field theory is considered. A modification-of the finite element procedure by Roddeman et al. (Roddeman, D. G., Drukker J., Oomens, C. W J., Janssen, J. D., 1987, ASME J. Appl. Mech. 54, pp. 884-892) is proposed to study the wrinkling behavior of a membrane element. The state of stress in the element is determined through a modified deformation gradient corresponding to a fictive nonwrinkled surface. The new model uses a continuously modified deformation gradient to capture the location orientation of wrinkles more precisely. It is argued that the fictive nonwrinkled surface may be looked upon as an everywhere-taut surface in the limit as the minor (tensile) principal stresses over the wrinkled portions go to zero. Accordingly, the modified deformation gradient is thought of as the limit of a sequence of everywhere-differentiable tensors. Under dynamic excitations, the governing equations are weakly projected to arrive at a system of nonlinear ordinary differential equations that is solved using different integration schemes. It is concluded that, implicit integrators work much better than explicit ones in the present context.
Resumo:
Autonomous mission control, unlike automatic mission control which is generally pre-programmed to execute an intended mission, is guided by the philosophy of carrying out a complete mission on its own through online sensing, information processing, and control reconfiguration. A crucial cornerstone of this philosophy is the capability of intelligence and of information sharing between unmanned aerial vehicles (UAVs) or with a central controller through secured communication links. Though several mission control algorithms, for single and multiple UAVs, have been discussed in the literature, they lack a clear definition of the various autonomous mission control levels. In the conventional system, the ground pilot issues the flight and mission control command to a UAV through a command data link and the UAV transmits intelligence information, back to the ground pilot through a communication link. Thus, the success of the mission depends entirely on the information flow through a secured communication link between ground pilot and the UAV In the past, mission success depended on the continuous interaction of ground pilot with a single UAV, while present day applications are attempting to define mission success through efficient interaction of ground pilot with multiple UAVs. However, the current trend in UAV applications is expected to lead to a futuristic scenario where mission success would depend only on interaction among UAV groups with no interaction with any ground entity. However, to reach this capability level, it is necessary to first understand the various levels of autonomy and the crucial role that information and communication plays in making these autonomy levels possible. This article presents a detailed framework of UAV autonomous mission control levels in the context of information flow and communication between UAVs and UAV groups for each level of autonomy.
Resumo:
In the present work, solidification of a hyper-eutectic ammonium chloride solution in a bottom-cooled cavity (i.e. with stable thermal gradient) is numerically studied. A Rayleigh number based criterion is developed, which determines the conditions favorable for freckles formation. This criterion, when expressed in terms of physical properties and process parameters, yields the condition for plume formation as a function of concentration, liquid fraction, permeability, growth rate of a mushy layer and thermophysical properties. Subsequently, numerical simulations are performed for cases with initial and boundary conditions favoring freckle formation. The effects of parameters, such as cooling rate and initial concentration, on the formation and growth of freckles are investigated. It was found that a high cooling rate produced larger and more defined channels which are retained for a longer durations. Similarly, a lower initial concentration of solute resulted in fewer but more pronounced channels. The number and size of channels are also found to be related to the mushy zone thickness. The trends predicted with regard to the variation of number of channels with time under different process conditions are in accordance with the experimental observations reported in the literature.
Resumo:
Understanding of the shape and size of different features of the human body from scanned data is necessary for automated design and evaluation of product ergonomics. In this paper, a computational framework is presented for automatic detection and recognition of important facial feature regions, from scanned head and shoulder polyhedral models. A noise tolerant methodology is proposed using discrete curvature computations, band-pass filtering, and morphological operations for isolation of the primary feature regions of the face, namely, the eyes, nose, and mouth. Spatial disposition of the critical points of these isolated feature regions is analyzed for the recognition of these critical points as the standard landmarks associated with the primary facial features. A number of clinically identified landmarks lie on the facial midline. An efficient algorithm for detection and processing of the midline, using a point sampling technique, is also presented. The results obtained using data of more than 20 subjects are verified through visualization and physical measurements. A color based and triangle skewness based schemes for isolation of geometrically nonprominent features and ear region are also presented. [DOI: 10.1115/1.3330420]
Resumo:
A new rotating beam finite element is developed in which the basis functions are obtained by the exact solution of the governing static homogenous differential equation of a stiff string, which results from an approximation in the rotating beam equation. These shape functions depend on rotation speed and element position along the beam and account for the centrifugal stiffening effect. Using this new element and the Hermite cubic finite element, a convergence study of natural frequencies is performed, and it is found that the new element converges much more rapidly than the conventional Hermite cubic element for the first two modes at higher rotation speeds. The new element is also applied for uniform and tapered rotating beams to determine the natural frequencies, and the results compare very well with the published results given in the literature.
Resumo:
Product success is substantially influenced by satisfaction of knowledge needs of designers, and many tools and methods have been proposed to support these needs. However, adoption of these methods in industry is minimal. This may be due to an inadequate understanding of the knowledge needs of designers in industry. This research attempts to develop a better understanding of these needs by undertaking descriptive studies in an industry. We propose a taxonomy of knowledge, and evaluate this by analyzing the questions asked by the designers involved in the study during their interactions. Using the taxonomy, we converted the questions asked into a generic form. The generic questions provide an understanding about what knowledge must be captured during design, and what its structure should be.
Resumo:
Fuel cells are emerging as alternate green power producers for both large power production and for use in automobiles. Hydrogen is seen as the best option as a fuel; however, hydrogen fuel cells require recirculation of unspent hydrogen. A supersonic ejector is an apt device for recirculation in the operating regimes of a hydrogen fuel cell. Optimal ejectors have to be designed to achieve best performances. The use of the vector evaluated particle swarm optimization technique to optimize supersonic ejectors with a focus on its application for hydrogen recirculation in fuel cells is presented here. Two parameters, compression ratio and efficiency, have been identified as the objective functions to be optimized. Their relation to operating and design parameters of ejector is obtained by control volume based analysis using a constant area mixing approximation. The independent parameters considered are the area ratio and the exit Mach number of the nozzle. The optimization is carried out at a particularentrainment ratio and results in a set of nondominated solutions, the Pareto front. A set of such curves can be used for choosing the optimal design parameters of the ejector.
Resumo:
A two-stage pulse tube cryocooler (PTC) which produces a no-load temperature of similar to 2.5 K in its second stage at an operating frequency of 1.6 Hz has been designed and fabricated. The second stage of the system provides a refrigeration power of similar to 250 mW at 5.0 K. The system uses stainless steel meshes (mesh size 200) along with lead (Pb) granules and combinations of Pb, Er3Ni, and HoCu2 as the first and second stage regenerator materials, respectively. Experimental studies have been carried out on different pulse tube configurations by varying the dimensions of the pulse tubes and regenerators to arrive at the best one, which leads to the lowest no-load second stage cold head temperature. Using this configuration, detailed experimental studies have been conducted by varying the volume percentage ratios of the second stage regenerator materials such as HoCu2, Er3Ni, and Pb (with an average grain size of similar to 250 mu m). This article presents the results of our experimental studies on cryocoolers with the regenerator material arranged in layered structures. Comparative studies have also been presented for specific cases where the regenerator materials are arranged as a homogeneous mixture in the second stage. The experimental results clearly indicate that the design of PTCs should use only layered structures of regenerator materials and not homogenous mixtures.
Resumo:
The reversible chemical reaction of Ca(OH)2/CaO appears to be attractive for storage of solar thermal energy, in view of the nonpolluting and nontoxic nature of the reactants. This paper presents some data on thermal decomposition of calcium hydroxide pellets along with its additives of aluminum, aluminum hydroxide, zinc, and copper. The addition of aluminum and zinc powder enhanced the rate of decomposition considerably at 450°C, but copper had no effect. Considerations on the effect of additives are also discussed in some detail, though their effects are not established with certainty. There is some evidence that heat transfer into the pellet, and the number of potential nucleation sites due to thermal stresses, influence the kinetics and mechanism of decomposition.
Resumo:
Today finite element method is a well established tool in engineering analysis and design. Though there axe many two and three dimensional finite elements available, it is rare that a single element performs satisfactorily in majority of practical problems. The present work deals with the development of 4-node quadrilateral element using extended Lagrange interpolation functions. The classical univariate Lagrange interpolation is well developed for 1-D and is used for obtaining shape functions. We propose a new approach to extend the Lagrange interpolation to several variables. When variables axe more than one the method also gives the set of feasible bubble functions. We use the two to generate shape function for the 4-node arbitrary quadrilateral. It will require the incorporation of the condition of rigid body motion, constant strain and Navier equation by imposing necessary constraints. The procedure obviates the need for isoparametric transformation since interpolation functions are generated for arbitrary quadrilateral shapes. While generating the element stiffness matrix, integration can be carried out to the accuracy desired by dividing the quadrilateral into triangles. To validate the performance of the element which we call EXLQUAD4, we conduct several pathological tests available in the literature. EXLQUAD4 predicts both stresses and displacements accurately at every point in the element in all the constant stress fields. In tests involving higher order stress fields the element is assured to converge in the limit of discretisation. A method thus becomes available to generate shape functions directly for arbitrary quadrilateral. The method is applicable also for hexahedra. The approach should find use for development of finite elements for use with other field equations also.
Resumo:
A differential temperature controller is incorporated in a solar water heating system to study the influence of its set points on system performance. The effectiveness of the controller set points DeltaT ON and DeltaT OFF on the pump cycling and energy collection has been studied experimentally and the results are presented in this paper.