903 resultados para Mechanical alloy
Resumo:
Minor addition of B to the Ti-6Al-4V alloy reduces the prior beta grain size by more than an order of magnitude. TiB formed in-situ in the process has been noted to decorate the grain boundaries. This microstructural modification influences the mechanical behavior of the Ti-6Al-4V alloy significantly. In this paper, an overview of our current research on tensile properties, fracture toughness as well as notched and un-notched fatigue properties of Ti-6Al-4V-xB with x varying between 0.0 to 0.55 wt.% is presented. A quantitative relationship between the microstructural length scales and the various mechanical properties have been developed. Moreover, the effect of the presence of hard and brittle TiB has also been studied.
Resumo:
Owing to their high strength-to-weight ratio, excellent mechanical properties and corrosion resistance, titanium (Ti) and its alloys, especially (alpha+beta) alloys like Ti-6Al-4V is the backbone materials for aerospace, energy, and chemical industries. Trace boron addition (similar to 0.1 wt. %) to the alloy Ti-6Al-4V produces a reduction in as-cast grain size by roughly an order of magnitude resulting in enhanced ductility, higher stiffness, strength and good fracture resistance. Boron addition could also affect the evolution of texture and microstructure in the material. The solidification microstructures of Boron free as well as Boron containing Ti-6Al-4V are found to be almost homogeneous from periphery towards the center of as-cast ingot in terms of both alpha-colony size and distribution. Boron addition substantially reduces alpha-colony size (similar to 50-80 mu m). A gradual change in alpha texture from periphery towards the center has been observed with orientations close to specific texture components suggesting the formation of texture zones. The mechanism of texture evolution can be visualized as a result of variant selection during solidification through (alpha+beta) phase field.
Resumo:
This article deals with the effect of 0.25-1.5 wt pct mischmetal (MM) addition on the mechanical properties, microstructure, electrical conductivity, and fracture behavior of cast Al-7Si-0.3Mg (LM 25/356) alloy. Modification of eutectic silicon by MM is compared with strontium modification in terms of microstructure, mechanical properties, and fading behavior. Loss of magnesium encountered on holding the molten alloy and its resultant effect on mechanical properties of alloys modified with MM and Sr are compared with those in the unmodified alloy.
Resumo:
In this paper we report the mechanical alloying behaviour of elemental aluminium with diamond cubic elements Ge and Si. A metastable crystalline phase with rhombohedral crystal structure forms in Al-70 Ge-30 and Al-60 Ge-40 alloy compositions. The phase always coexists with elemental constituents and decomposes over a broad temperature range. No such metastable phase could be observed in the Al-Si system. We also report X-ray diffractometry and differential scanning calorimetry results suggestive of amorphization. Finally a comparison was made of the present result with that obtained in rapid solidification.
Resumo:
A fatigue crack growth rate study has been carried out on L-72 aluminium alloy plate specimens with and without cold worked holes. The cold worked specimens showed significantly increased fatigue life compared to unworked specimens. Computer software is developed to evaluate the stress intensity factor for non-uniform stress distributions using Green's function approach. The exponents for the Paris equation in the stable crack growth region for cold worked and unworked specimens are 1.26 and 3.15 respectively. The reduction in exponent value indicates the retardation in crack growth rate. An SEM study indicates more plastic deformation at the edge of the hole for unworked samples as compared to the worked samples during the crack initiation period.
Resumo:
Thermal analysis and interrupted quench experiments have been carried out to study the formation of beta-FeSiAl5 and (Be-Fe)-BeSiFe2Al8 phases in Al-7Si-0.3Mg alloy with and without Be addition. In the base alloy with 0.6% Fe (without Be addition), a needle- and plate-shaped beta-phase is present in the interdendritic regions and is formed by a ternary eutectic reaction. In the Be- added alloy with 0.6% Fe, a Be-Fe phase of Chinese script and polygon shapes grows along with the primary alpha-Al dendrites, leading to superior mechanical properties. It is proposed that this Be-Fe phase is formed by a peritectic reaction. Be addition has also resulted in some grain refinement.
Resumo:
In the present investigation, Al 2024-15vol.%Al2O3 particulate (average size, 18 mu m) composites were fabricated using the liquid metallurgy route. The wear and friction characteristics of Al alloy 2024 and Al 2024-15vol.%Al2O3p, composite in the as-extruded and peak-aged conditions were studied using a pin-on-disc machine (with a steel disc as the counterface material). The worn surfaces, subsurfaces and the debris were analysed in a scanning electron microscope.The performance of the composite in the as-extruded condition is slightly inferior to that of the unreinforced alloy. However, in the T6 condition, although the wear rates of two materials are initially comparable, the unreinforced alloy seizes while the composite does not within the tested range employed. In the as-extruded condition, the presence of Al2O3 particles is not particularly beneficial as they fracture and result in extensive localized cracking and removal of material from the surface. In the peak-aged condition, however, while the unreinforced alloy exhibits severe plastic deformation and undergoes seizure, there is no significant change in the mechanism in the case of the composite. Except in the case of the peak-aged unreinforced alloy, worn surfaces of all other materials show the presence of an iron-rich layer.
Resumo:
A numerical approach for coupling the temperature and concentration fields using a micro/macro dual scale model for a solidification problem is presented. The dual scale modeling framework is implemented on a hybrid explicit-implicit solidification scheme. The advantage of this model lies in more accurate consideration of microsegregation occurring at micro-scale using a subgrid model. The model is applied to the case of solidification of a Pb-40% Sn alloy in a rectangular cavity. The present simulation results are compared with the corresponding experimental results reported in the literature, showing improvement in macrosegregation predictions. Subsequently, a comparison of macrosegregation prediction between the results of the present method with those of a parameter model is performed, showing similar trends.
Resumo:
A systematic approach is developed for scaling analysis of momentum, heat and species conservation equations pertaining to the case of solidification of a binary mixture. The problem formulation and description of boundary conditions are kept fairly general, so that a large class of problems can be addressed. Analysis of the momentum equations coupled with phase change considerations leads to the establishment of an advection velocity scale. Analysis of the energy equation leads to an estimation of the solid layer thickness. Different regimes corresponding to different dominant modes of transport are simultaneously identified. A comparative study involving several cases of possible thermal boundary conditions is also performed. Finally, a scaling analysis of the species conservation equation is carried out, revealing the effect of a non-equilibrium solidification model on solute segregation and species distribution. It is shown that non-equilibrium effects result in an enhanced macrosegregation compared with the case of an equilibrium model. For the sake of assessment of the scaling analysis, the predictions are validated against corresponding computational results.
Resumo:
In this article, a single-phase, one-domain macroscopic model is developed for studying binary alloy solidification with moving equiaxed solid phase, along with the associated transport phenomena. In this model, issues such as thermosolutal convection, motion of solid phase relative to liquid and viscosity variations of the solid-liquid mixture with solid fraction in the mobile zone are taken into account. Using the model, the associated transport phenomena during solidification of Al-Cu alloys in a rectangular cavity are predicted. The results for temperature variation, segregation patterns, and eutectic fraction distribution are compared with data from in-house experiments. The model predictions compare well with the experimental results. To highlight the influence of solid phase movement on convection and final macrosegregation, the results of the current model are also compared with those obtained from the conventional solidification model with stationary solid phase. By including the independent movement of the solid phase into the fluid transport model, better predictions of macrosegregation, microstructure, and even shrinkage locations were obtained. Mechanical property prediction models based on microstructure will benefit from the improved accuracy of this model.
Resumo:
Experimental studies were performed to investigate the role and influence of grain movement on macrosegregation and microstructure evolution during equiaxed solidification. Casting experiments were performed with a grain-refined Al-Cu alloy in a rectangular sand mold. For the aluminum alloy studied, the equiaxed grains are lighter than the bulk melt and thus float up. Experiments were designed to investigate floatation phenomena of equiaxed grains in the presence of thermosolutal convection. Cooling curves were recorded at key locations in both the casting and the chill. Quantitative image analysis and spatial chemical analysis were performed on the solidified casting to observe the chemical and microstructural inhomogeneity created by the melt convection and solid floatation. Several notable features that can be attributed to grain movement were observed in temperature histories, macrosegregation patterns, and microstructures. In our experiments, the floatation of grains influences the thermal conditions and the overall flow direction in the casting cavity. In some cases, the induced flow resulting from the grain movement caused a flow reversal. This in turn influences the solidification direction, microstructure evolution, and the overall macrosegregation behavior.
Resumo:
In many industrial casting processes, knowledge of the solid fraction evolution during the solidification process is a key factor in determining the process parameters such as cooling rate, stirring intensity and in estimating the total solidification time. In the present work, a new method of estimating solid fraction is presented, which is based on calorimetric principles. In this method, the cooling curve data at each point in the melt, along with the thermal boundary conditions, are used to perform energy balance in the mould, from which solid fraction generation during any time interval can be estimated. This method is applied to the case of a rheocasting process, in which Al-Si alloy (A356 alloy) is solidified by stirring in a cylindrical mould placed in the annulus of a linear electromagnetic stirrer. The metal in the mould is simultaneously cooled and stirred to produce a cylindrical billet with non-dendritic globular microstructure. Temperature is measured at key locations in the mould to assess the various heat exchange processes prevalent in the mould and to monitor the solidification rate. The results obtained by energy balance method are compared with those by the conventional procedure of calculating solid fraction using the Schiel equation.
Resumo:
There is considerable interest currently in developing magnesium based alloys as replacements for aluminum alloys in automobile applications, due to their high specific strength as compared to aluminum alloys. However, the poor formability of magnesium alloys has restricted their applications; superplasticity can be utilized to form components with complex shapes. In the present study, the compressive deformation characteristics of a Mg-0.8 wt% Al alloy with an initial grain size of 19 +/- 1.0 mum have been studied in the temperature range of 623-673 K and at strain rates ranging from 10(-7) to 10(-3) s(-1). The stress exponent was observed to decrease with a decrease in stress. The results are analyzed in terms of the existing theoretical models for high temperature deformation. Furthermore, the potential for superplasticity in this alloy is explored, based on the mechanical and microstructural characteristics of the alloy.
Resumo:
The severe wear of a near eutectic aluminium silicon alloy is explored using a range of electron microscopic, spectroscopic and diffraction techniques to identify the residually strained and unstrained regions, microcracks and oxidized regions in the subsurface. In severe wear the contact pressure exceeds the elastic shakedown limit. Under this condition the primary and eutectic silicon particles fragment drastically. The fragments are transported by the matrix as it undergoes incremental straining with each cyclic contact at the asperity level. The grains are refined from similar to 2000 nm in the bulk to 30 nm in the near surface region. A large reduction in the interparticle distance compared with that for a milder stage of wear gives rise to high strain gradients which contribute to an enhancement of the dislocation density. The resulting regions of very high strain in the boundaries of the recrystallized grains as well as within the subgrains lead to the formation of microvoidskracks. This is accompanied by the formation of brittle oxides at these subsurface interfaces due to enhanced diffusion of oxygen. We believe that the abundance of such microcracks in the near surface region, primed by severe plastic deformation, is what distinguishes a severe wear regime from mild wear. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.