961 resultados para Maximal topologies
Determination of the lactate threshold and maximal blood lactate steady state intensity in aged rats
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Gurjao, ALD, Goncalves, R, de Moura, RF, and Gobbi, S. Acute effect of static stretching on rate of force development and maximal voluntary contraction in older women. J Strength Cond Res 23(7): 2149-2154, 2009-The purpose of this study was to investigate, in older women, the acute effect of static stretching (SS) on both muscle activation and force output. Twenty-three older women (64.6 +/- 7.1 yr) participated in the study. The maximal voluntary contraction (MVC), rate of force development (RFD) (50, 100, 150, and 200 ms relative to onset of muscular contraction), and peak RFD (PRFD) (the steepest slope of the curve during the first 200 ms) were tested under 2 randomly separate conditions: SS and control (C). Electromyographic (EMG) activity of the vastus medialis (VM), vastus lateralis (VL), and biceps femoris (BF) muscles also was assessed. The MVC was significantly lower (p < 0.05) in the 3 trials of SS when compared with the C condition (control: 925.0 +/- 50.9 N; trial 1 : 854.3 +/- 55.3 N; trial 2 : 863.1 +/- 52.2 N; and trial 3 : 877.5 +/- 49.9 N). PRFD showed a significant decrease only for the first 2 trials of SS when compared with the C condition (control: 2672.3 +/- 259.1 N/s; trial 1 : 2296.6 +/- 300.7 N/s; and trial 2 : 2197.9 +/- 246.3 N/s). However, no difference was found for RFD (50, 100, 150, and 200 ms relative to onset of muscular contraction). The EMG activity for VM, VL, and BF was not significantly different between the C and SS conditions. In conclusion, the older women's capacity to produce muscular force decreased after their performance of SS exercises. The mechanisms responsible for this effect do not appear to be related to muscle activation. Thus, if flexibility is to be trained, it is recommended that SS does not occur just before the performance of activities that require high levels of muscular force.
Resumo:
The aims of this study were: (1) to verify the validity of previous proposed models to estimate the lowest exercise duration (T (LOW)) and the highest intensity (I (HIGH)) at which VO(2)max is reached (2) to test the hypothesis that parameters involved in these models, and hence the validity of these models are affected by aerobic training status. Thirteen cyclists (EC), eleven runners (ER) and ten untrained (U) subjects performed several cycle-ergometer exercise tests to fatigue in order to determine and estimate T (LOW) (ET (LOW)) and I (HIGH) (EI (HIGH)). The relationship between the time to achieved VO(2)max and time to exhaustion (T (lim)) was used to estimate ET (LOW). EI (HIGH) was estimated using the critical power model. I (HIGH) was assumed as the highest intensity at which VO2 was equal or higher than the average of VO(2)max values minus one typical error. T (LOW) was considered T (lim) associated with I (HIGH). No differences were found in T (LOW) between ER (170 +/- 31 s) and U (209 +/- 29 s), however, both showed higher values than EC (117 +/- 29 s). I (HIGH) was similar between U (269 +/- 73 W) and ER (319 +/- 50 W), and both were lower than EC (451 +/- 33 W). EI (HIGH) was similar and significantly correlated with I-HIGH only in U (r = 0.87) and ER (r = 0.62). ET (LOW) and T (LOW) were different only for U and not significantly correlated in all groups. These data suggest that the aerobic training status affects the validity of the proposed models for estimating I (HIGH).
Resumo:
Recent studies of the delectability of the cosmic topology of nearly flat universes have often concentrated on the range of values of Omega(0) given by current observations. Here we study the consequences of taking a range of bounds satisfying \Omega(0) - 1\ much less than 1, which include those expected from future observations such as the Planck mission, as well as those predicted by inflationary models. We show that in this limit, a generic detectable non-flat manifold is locally indistinguishable from either a cylindrical (R-2 X S) or toroidal (R x T-2) manifold, irrespective of its global shape, with the former being more likely. Importantly, this is compatible with some recent indications of the alignment of the quadrupole and octupole moments, based on the analysis of the first year WMAP data. It also implies that in this limit an observer would not be able to distinguish topologically whether the universe is spherical, hyperbolic or flat. By severely restricting the expected topological signatures of detectable isometries, our results provide an effective theoretical framework for interpreting cosmological observations, and can be used to confine the parameter spaces which realistic search strategies, such as the 'circles in the sky' method, need to concentrate on.
Resumo:
Exact and closed-form expressions for the level crossing rate and average fade duration are presented for equal gain combining and maximal ratio combining schemes, assuming an arbitrary number of independent branches in a Rayleigh environment. The analytical results are thoroughly validated by simulation.
Resumo:
The objective of this study was to determine the critical speed (CS) for track cycling and to assess whether a lactate steady state occurs at this speed. Fourteen competitive cyclists performed the following tests on an official cycling track (333.3 m): 1) incremental test for determination of the intensity corresponding to 4 mM of blood lactate (onset of blood lactate accumulation, OBLA) and maximal oxygen uptake (VO(2)max); 2) CS: 3 maximal bouts for distances of 2, 4 and 6 km executed in random order and with a period of recovery of 40 to 50 min between bouts. CS was determined for each subject from the linear regression between the distance and the time taking to cycle it; 3) Endurance test in which subjects were instructed to pedal at 100% of their individually determined CS for 30 min. At the 10(th) and 30(th) min (or upon exhaustion), 25 mul of blood were collected from ear lobe for later analysis of blood lactate [Lac]b. An increase less than or equal to1 mM between 10 and 30 min of exercise was considered as the criterion for the occurrence of the lactate steady state. CS (49.6 +/- 8.6 ml.kg(-1).min(-1); 36.9 +/- 2.7 km.h(-1)) was significantly higher than OBLA (43.7 8.0 ml.kg(-1).min(-1); 35.24 +/- 2.6 km.h(-1)) although the two parameters were highly correlated (r=0.97). During the endurance test, only 8 of the 14 subjects completed the 30 min period at CS. of these 8 subjects, only 2 presented a lactate steady state. Time to exhaustion at CS was 20.3 +/- 1.6 min for the remaining 6 subjects. The 12 subjects who did not reach a lactate steady state presented mean [Lac]b values of 7.4 +/- 1.3 mM at 10 min and of 9.4 +/- 1.9 mM at the end of the test (exhaustion), characterizing an exercise intensity of high lactacidemia. on the basis of the present results, we can conclude that CS determined by a track cycling test seems to overestimate the intensity of the maximal lactate steady state for most subjects.
Resumo:
1. A method for obtaining the end-systolic left ventricular (LV) pressure-diameter and stress-diameter relationships in man was critically analyzed.2. Pressure-diameter and stress-diameter relationships were determined throughout the cardiac cycle by combining standard LV manometry with M-mode echocardiography. Nine adult patients with heart disease and without heart failure were studied during intracardiac catheterization under three different conditions of arterial pressure, i.e., basal (B) condition (mean +/- SD systolic pressure, 102 +/- 10 mmHg) and two stable states of arterial hypertension (H(I), 121 +/- 12 mmHg; H(II), 147 +/- 17 mmHg) induced by venous infusion of phenylephrine after parasympathetic autonomic blockade with 0.04 mg/kg atropine.3. Significant reflex heart rate variation with arterial hypertension was observed (B, 115 +/- 20 bpm; H(I), 103 +/- 14 bpm; H(II), 101 +/- 13 bpm) in spite of the parasympathetic blockade with atropine. The linear end-systolic pressure-diameter and stress-diameter relationships ranged from 53.0 to 160.0 mmHg/cm and from 97.0 to 195.0 g/cm3, respectively.4. The end-systolic LV pressure-diameter and stress-diameter relationship lines presented high and variable slopes. The slopes, which are indicators of myocardial contractility, are susceptible to modifications by small deviations in the measurement of the ventricular diameter or by delay in the pressure curve recording.
Resumo:
1. Maximal lactate steady state (MLSS) corresponds to the highest blood lactate concentration (MLSSc) and workload (MLSSw) that can be maintained over time without continual blood lactate accumulation and is considered an important marker of endurance exercise capacity. The present study was undertaken to determine MLSSw and MLSSc in running mice. In addition, we provide an exercise training protocol for mice based on MLSSw.2. Maximal lactate steady state was determined by blood sampling during multiple sessions of constant-load exercise varying from 9 to 21 m/min in adult male C57BL/6J mice. The constant-load test lasted at least 21 min. The blood lactate concentration was analysed at rest and then at 7 min intervals during exercise.3. The MLSSw was found to be 15.1 +/- 0.7 m/min and corresponded to 60 +/- 2% of maximal speed achieved during the incremental exercise testing. Intra- and interobserver variability of MLSSc showed reproducible findings. Exercise training was performed at MLSSw over a period of 8 weeks for 1 h/day and 5 days/week. Exercise training led to resting bradycardia (21%) and increased running performance (28%). of interest, the MLSSw of trained mice was significantly higher than that in sedentary littermates (19.0 +/- 0.5 vs 14.2 +/- 0.5 m/min; P = 0.05), whereas MLSSc remained unchanged (3.0 mmol/L).4. Altogether, we provide a valid and reliable protocol to improve endurance exercise capacity in mice performed at highest workload with predominant aerobic metabolism based on MLSS assessment.
Resumo:
The purposes of this study were: a) to verify the effect of chronological age and sexual maturation on the time to exhaustion at VO(2)max (t(lim)) and; b) to examine the reproducibility of t(lim) in boys aged 10-15 years. Forty boys, divided into 4 groups, in accordance to the chronological age (G10-12 and G13-15) and sexual maturation (P1-P3 and P4-P5 levels for pubic hair), performed the following tests: 1) incremental test for determination of VO(2)max and; 2) all-out exercise bout performed at VO(2)max to determine the t(lim). There was no difference of t(lim) (sec) between G10-12 and G13-15 (181.5 +/- 96.3 vs. 199 105.5). While the two measures of t(lim) were moderately related (r = 0.78), t(lim) from the second test (226.6 +/- 96.1 s) was higher than that of the first (191.3 +/- 79.2 s). We can conclude that the t(lim) is not influenced by chronological age and sexual maturation. Besides, t(lim) presents a lower reproducibility in children and adolescents.
Resumo:
The main purpose of this study was to analyze the effects of exercise mode, training status and specificity on the oxygen uptake ((V)over dot O-2) kinetics during maximal exercise performed in treadmill running and cycle ergometry. Seven runners (R), nine cyclists (C), nine triathletes (T) and eleven untrained subjects (U), performed the following tests on different days on a motorized treadmill and on a cycle ergometer: (1) incremental tests in order to determine the maximal oxygen uptake ((V)over dot O-2max) and the intensity associated with the achievement of (V)over dot O-2max (I(V)over dot O-2max); and (2) constant work-rate running and cycling exercises to exhaustion at I(V)over dot O-2max to determine the effective time constant of the (V)over dot O-2 response (tau(V)over dot O-2). Values for (V)over dotO(2max) obtained on the treadmill and cycle ergometer [R=68.8 (6.3) and 62.0 (5.0); C=60.5 (8.0) and 67.6 (7.6); T=64.5 (4.8) and 61.0 (4.1); U=43.5 (7.0) and 36.7 (5.6); respectively] were higher for the group with specific training in the modality. The U group showed the lowest values for VO2max, regardless of exercise mode. Differences in tau(V)over dot O-2 (seconds) were found only for the U group in relation to the trained groups [R=31.6 (10.5) and 40.9 (13.6); C=28.5 (5.8) and 32.7 (5.7); T=32.5 (5.6) and 40.7 (7.5); U=52.7 (8.5) and 62.2 (15.3); for the treadmill and cycle ergometer, respectively]; no effects of exercise mode were found in any of the groups. It is concluded that tauVO(2) during the exercise performed at I(V)over dot O-2max is dependent on the training status, but not dependent on the exercise mode and specificity of training. Moreover, the transfer of the training effects on tau(V)over dotO(2) between both exercise modes may be higher compared with (V)over dot O-2max.
Resumo:
The objective of this study was to analyze, in triathletes, the possible influence of the exercise mode (running x cycling) on time to exhaustion (TTE) and oxygen uptake (VO2) response during exercise performed at the intensity associated with the achievement of maximal oxygen uptake (IVO2max). Eleven male triathletes (21.8 +/- 3.8 yr) performed the following tests on different days on a motorized treadmill and on a cycle ergometer: 1) incremental tests in order to determine VO2max and IVO2max and, 2) constant work rate tests to exhaustion at IVO2max to determine TTE and to describe VO2 response (time to achieve VO2max-TAVO(2max) and time maintained at VO2max-TMVO2max). No differences were found in VO2max, TTE and TMVO2max obtained on the treadmill tests (63.7 +/- 4.7 ml.kg(-1).min(-1); 324.6 +/- 109.1 s; 178.9 +/- 93.6 s) and cycle ergometer tests (61.4 +/- 4.5 ml.kg(-1).min(-1); 390.4 +/- 114.4 s; 213.5 +/- 102.4 s). However, TAVO(2max) was influenced by exercise mode (145.7 +/- 25.3 vs. 176.8 +/- 20.1 s; in treadmill and cycle ergometer, respectively; p = 0.006). It is concluded that exercise modality affects the TAVO(2max) without influencing TTE and TMVO2max during exercise at IVO2max in triathletes.
Resumo:
The maximal lactate steady state (MLSS) is defined as the highest blood lactate concentration that can be maintained over time without a continual blood lactate accumulation. The objective of the present study was to analyze the effects of pedal cadence (50 vs. 100 rev min(-1)) on MLSS and the exercise workload at MLSS (MLSSworkload) during cycling. Nine recreationally active males (20.9 +/- 2.9 years, 73.9 +/- 6.5 kg, 1.79 +/- 0.09 m) performed an incremental maximal load test (50 and 100 rev min(-1)) to determine anaerobic threshold (AT) and peak workload (PW), and between two and four constant submaximal load tests (50 and 100 rev min(-1)) on a mechanically braked cycle ergometer to determine MLSSworkload and MLSS. MLSSworkload was defined as the highest workload at which blood lactate concentration did not increase by more than 1 mM between minutes 10 and 30 of the constant workload. The maximal lactate steady state intensity (MLSSintensity) was defined as the ratio between MLSSworkload and PW. MLSSworkload (186.1 +/- 21.2 W vs. 148.2 +/- 15.5 W) and MLSSintensity (70.5 +/- 5.7% vs. 61.4 +/- 5.1%) were significantly higher during cycling at 50 rev min(-1) than at 100 rev min(-1), respectively. However, there was no significant difference in MLSS between 50 rev min(-1) (4.8 +/- 1.6 mM) and 100 rev min(-1) (4.7 +/- 0.8 mM). We conclude that MLSSworkload and MLSSintensity are dependent on pedal cadence (50 vs. 100 rev min(-1)) in recreationally active individuals. However, this study showed that MLSS is not influenced by the different pedal cadences analyzed.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)