990 resultados para Mathematics, Applied
Resumo:
We consider algorithms for computing the Smith normal form of integer matrices. A variety of different strategies have been proposed, primarily aimed at avoiding the major obstacle that occurs in such computations-explosive growth in size of intermediate entries. We present a new algorithm with excellent performance. We investigate the complexity of such computations, indicating relationships with NP-complete problems. We also describe new heuristics which perform well in practice. Wie present experimental evidence which shows our algorithm outperforming previous methods. (C) 1997 Academic Press Limited.
Resumo:
Fuzzy Bayesian tests were performed to evaluate whether the mother`s seroprevalence and children`s seroconversion to measles vaccine could be considered as ""high"" or ""low"". The results of the tests were aggregated into a fuzzy rule-based model structure, which would allow an expert to influence the model results. The linguistic model was developed considering four input variables. As the model output, we obtain the recommended age-specific vaccine coverage. The inputs of the fuzzy rules are fuzzy sets and the outputs are constant functions, performing the simplest Takagi-Sugeno-Kang model. This fuzzy approach is compared to a classical one, where the classical Bayes test was performed. Although the fuzzy and classical performances were similar, the fuzzy approach was more detailed and revealed important differences. In addition to taking into account subjective information in the form of fuzzy hypotheses it can be intuitively grasped by the decision maker. Finally, we show that the Bayesian test of fuzzy hypotheses is an interesting approach from the theoretical point of view, in the sense that it combines two complementary areas of investigation, normally seen as competitive. (C) 2007 IMACS. Published by Elsevier B.V. All rights reserved.
Resumo:
In this work we show that the dengue epidemic in the city of Singapore organized itself into a scale-free network of transmission as the 2000-2005 outbreaks progressed. This scale-free network of cluster comprised geographical breeding places for the aedes mosquitoes, acting as super-spreaders nodes in a network of transmission. The geographical organization of the network was analysed by the corresponding distribution of weekly number of new cases. Therefore, our hypothesis is that the distribution of dengue cases reflects the geographical organization of a transmission network, which evolved towards a power law as the epidemic intensity progressed until 2005. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
There is a positive correlation between the intensity of use of a given antibiotic and the prevalence of resistant strains. The more you treat, more patients infected with resistant strains appears and, as a consequence, the higher the mortality due to the infection and the longer the hospitalization time. In contrast, the less you treat, the higher the mortality rates and the longer the hospitalization time of patients infected with sensitive strains that could be successfully treated. The hypothesis proposed in this paper is an attempt to solve such a conflict: there must be an optimum treatment intensity that minimizes both the additional mortality and hospitalization time due to the infection by both sensitive and resistant bacteria strains. In order to test this hypothesis we applied a simple mathematical model that allowed us to estimate the optimum proportion of patients to be treated in order to minimize the total number of deaths and hospitalization time due to the infection in a hospital setting. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
In this note, we present three independent results within generalized complex analysis (in the Colombeau sense). The first of them deals with non-removable singularities; we construct a generalized function u on an open subset Omega of C(n), which is not a holomorphic generalized function on Omega but it is a holomorphic generalized function on Omega\S, where S is a hypersurface contained in Omega. The second result shows the existence of a holomorphic generalized function with prescribed values in the zero-set of a classical holomorphic function. The last result states the existence of a compactly supported solution to the (partial derivative) over bar operator.
Resumo:
A 4-wheel is a simple graph on 5 vertices with 8 edges, formed by taking a 4-cycle and joining a fifth vertex (the centre of the 4-wheel) to each of the other four vertices. A lambda -fold 4-wheel system of order n is an edge-disjoint decomposition of the complete multigraph lambdaK(n) into 4-wheels. Here, with five isolated possible exceptions when lambda = 2, we give necessary and sufficient conditions for a lambda -fold 4-wheel system of order n to be transformed into a lambda -fold Ccyde system of order n by removing the centre vertex from each 4-wheel, and its four adjacent edges (retaining the 4-cycle wheel rim), and reassembling these edges adjacent to wheel centres into 4-cycles.
Resumo:
In this paper we present the composite Euler method for the strong solution of stochastic differential equations driven by d-dimensional Wiener processes. This method is a combination of the semi-implicit Euler method and the implicit Euler method. At each step either the semi-implicit Euler method or the implicit Euler method is used in order to obtain better stability properties. We give criteria for selecting the semi-implicit Euler method or the implicit Euler method. For the linear test equation, the convergence properties of the composite Euler method depend on the criteria for selecting the methods. Numerical results suggest that the convergence properties of the composite Euler method applied to nonlinear SDEs is the same as those applied to linear equations. The stability properties of the composite Euler method are shown to be far superior to those of the Euler methods, and numerical results show that the composite Euler method is a very promising method. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Interval-valued versions of the max-flow min-cut theorem and Karp-Edmonds algorithm are developed and provide robustness estimates for flows in networks in an imprecise or uncertain environment. These results are extended to networks with fuzzy capacities and flows. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Ussing [1] considered the steady flux of a single chemical component diffusing through a membrane under the influence of chemical potentials and derived from his linear model, an expression for the ratio of this flux and that of the complementary experiment in which the boundary conditions were interchanged. Here, an extension of Ussing's flux ratio theorem is obtained for n chemically interacting components governed by a linear system of diffusion-migration equations that may also incorporate linear temporary trapping reactions. The determinants of the output flux matrices for complementary experiments are shown to satisfy an Ussing flux ratio formula for steady state conditions of the same form as for the well-known one-component case. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
In this paper we discuss implicit Taylor methods for stiff Ito stochastic differential equations. Based on the relationship between Ito stochastic integrals and backward stochastic integrals, we introduce three implicit Taylor methods: the implicit Euler-Taylor method with strong order 0.5, the implicit Milstein-Taylor method with strong order 1.0 and the implicit Taylor method with strong order 1.5. The mean-square stability properties of the implicit Euler-Taylor and Milstein-Taylor methods are much better than those of the corresponding semi-implicit Euler and Milstein methods and these two implicit methods can be used to solve stochastic differential equations which are stiff in both the deterministic and the stochastic components. Numerical results are reported to show the convergence properties and the stability properties of these three implicit Taylor methods. The stability analysis and numerical results show that the implicit Euler-Taylor and Milstein-Taylor methods are very promising methods for stiff stochastic differential equations.
Resumo:
We establish existence results for solutions to three-point boundary value problems for nonlinear, second-order, ordinary differential equations with nonlinear boundary conditions. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
We establish existence of solutions for a finite difference approximation to y = f(x, y, y ') on [0, 1], subject to nonlinear two-point Sturm-Liouville boundary conditions of the form g(i)(y(i),y ' (i)) = 0, i = 0, 1, assuming S satisfies one-sided growth bounds with respect to y '. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Proportionally balanced designs were introduced by Gray and Matters in response to a need for the allocation of markers of the Queensland Core Skills Test to have a certain property. Put simply, markers were allocated to pairs of units in proportions that reflected the relative numbers of markers allocated in total to each unit. In this paper, the first author extends the theoretical results relating to such designs and provides further instances, and two general constructions, in the case that the design comprises blocks of precisely two sizes.
Resumo:
The stability of difference inclusions x(k+1) is an element of F(x(k)) is studied, where F(x) = {F(x, gimel) : is an element of Lambda} and the selections F(., gimel) : E -->E assume values in a Banach space E, partially ordered by a cone K. It is assumed that the operators F(.,gimel) are heterotone or pseudoconcave. The main results concern asymptotically stable absorbing sets, and include the case of a single equilibrium point. The results are applied to a number of practical problems.
Resumo:
Codes C-1,...,C-M of length it over F-q and an M x N matrix A over F-q define a matrix-product code C = [C-1 (...) C-M] (.) A consisting of all matrix products [c(1) (...) c(M)] (.) A. This generalizes the (u/u + v)-, (u + v + w/2u + v/u)-, (a + x/b + x/a + b + x)-, (u + v/u - v)- etc. constructions. We study matrix-product codes using Linear Algebra. This provides a basis for a unified analysis of /C/, d(C), the minimum Hamming distance of C, and C-perpendicular to. It also reveals an interesting connection with MDS codes. We determine /C/ when A is non-singular. To underbound d(C), we need A to be 'non-singular by columns (NSC)'. We investigate NSC matrices. We show that Generalized Reed-Muller codes are iterative NSC matrix-product codes, generalizing the construction of Reed-Muller codes, as are the ternary 'Main Sequence codes'. We obtain a simpler proof of the minimum Hamming distance of such families of codes. If A is square and NSC, C-perpendicular to can be described using C-1(perpendicular to),...,C-M(perpendicular to) and a transformation of A. This yields d(C-perpendicular to). Finally we show that an NSC matrix-product code is a generalized concatenated code.