984 resultados para Material processing
Resumo:
In many production processes, a key material is prepared and then transformed into different final products. The lot sizing decisions concern not only the production of final products, but also that of material preparation in order to take account of their sequence-dependent setup costs and times. The amount of research in recent years indicates the relevance of this problem in various industrial settings. In this paper, facility location reformulation and strengthening constraints are newly applied to a previous lot-sizing model in order to improve solution quality and computing time. Three alternative metaheuristics are used to fix the setup variables, resulting in much improved performance over previous research, especially regarding the use of the metaheuristics for larger instances. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Enfermagem (mestrado profissional) - FMB
Resumo:
O trabalho analisa a implantação, no último quartel do século XX, na Amazônia oriental brasileira, de indústria voltada à produção de ferro-gusa destinado ao mercado internacional de insumos siderúrgicos. Demonstra que, nos anos 1980, o discurso estatal anunciou as plantas industriais deste segmento como elemento estratégico de modernização econômica da região. Tal postura justificou a concessão de benefícios fiscais, creditícios e de infraestrutura a 22 empresas de siderurgia e metalurgia. No âmbito da dimensão ambiental, o estudo demonstra que a produção de ferro-gusa recorre a processos marcados por baixa eficiência energética e que deles resultou o acesso, sem prudência ecológica, a estoque de biomassa da floresta amazônica, com ampliação da pressão antrópica sobre ela. O estudo evidencia que o plantio de grandes áreas de floresta para produzir carvão vegetal não se concretizou, manteve-se tão-somente como retórica desprovida de base realista. Quanto à dimensão econômica, o estudo indica que as limitações de a indústria de ferro-gusa impulsionar processos de modernização vinculam-se, dentre outros aspectos, ao fato de ela ter na demanda de carvão vegetal o principal elo de articulação com a sociedade e com a economia da região. Tal demanda é suprida por centenas de fornecedores e, por meio dela, a indústria controla a margem de lucro e comprime os custos de produção transferindo custos privados para a sociedade. O estudo demonstra, ainda, que o padrão de atuação deste segmento empresarial vincula-se a condicionamentos econômicos e institucionais: a implantação de florestas energéticas exige investimentos de longo prazo, somados às grandes oscilações no preço do ferro-gusa e a dinâmicas institucionais que abrem possibilidade de se acessar, ilegalmente, biomassa de florestas primárias. Isso levou o segmento a recorrer, historicamente, ao suprimento de carvão vegetal produzido, sobretudo, a partir da biomassa de florestas primárias e não da silvicultura. Com base em tais evidências, o trabalho conclui que a predição estatal de impulso regional modernizante não se materializou. A causa principal foi a inexistência de competências sociais para regular a transformação de matéria e energia em mercadorias, e esta produção teve seus fundamentos marcados pela degradação social e ambiental. Assim, atuou em sentido contrário ao discurso estatal: acelerou a transferência energética, material e de valores para outras regiões. Drenagem energético-material que não foi compensada, nem pela capacidade de a região equilibrar as perdas com importações de produtos, nem pela implementação de dinâmicas eficazes para a industrialização da região.
Resumo:
Neste trabalho, materiais compósitos de matriz poliéster reforçados por fibras curtas de sisal, por resíduo de madeira e por sistema híbrido sisal/resíduo de madeira, dispostos aleatoriamente foram produzidos, utilizando-se o menor nível possível de processamento tecnológico nas etapas produtivas, com vistas a se produzir um compósito tecnicamente viável a pequenos produtores. A matriz de poliéster utilizada foi a tereftálica pré-acelerada com naftenato de cobalto e curada a temperatura ambiente com peróxido de metil-etil-cetona (MEK) em diferentes proporções em relação à resina, 0,33%, 1,66%, 3,33% e 5,00% em volume, de forma a se avaliar a influência deste nas propriedades mecânicas. As fibras de sisal foram cortadas manualmente nos comprimentos de 5, 10 e 15mm e utilizadas da maneira como adquiridas, sem tratamento superficial. O resíduo de madeira utilizado foi o pó de lixadeira da madeira maçaranduba. Os compósitos foram fabricados por moldagem manual, sem pressão e a temperatura ambiente. Foram fabricados corpos de prova de matriz pura, compósitos reforçados por sisal, variando-se o comprimento das fibras, compósitos reforçados por pó de maçaranduba e compósitos de reforço híbrido, sisal/pó de madeira, em diferentes proporções entre os constituintes. As propriedades mecânicas foram avaliadas por ensaios de tração e impacto charpy e as superfícies de fratura geradas foram avaliadas por microscopia eletrônica de varredura de modo a se correlacionar os aspectos de fratura com as propriedades mecânicas. Foi determinada a massa específica de cada série de corpos de prova fabricada, bem como a fração volumétrica dos reforços nos compósitos. Os resultados demonstraram que com o aumento do comprimento da fibra de sisal a resistência à tração e ao impacto dos compósitos foi incrementada, alcançando, o compósito com fibras de sisal de 15 mm, o melhor desempenho mecânico dentre as séries testadas. Por outro lado, a heterogeneidade granulométrica do pó de maçaranduba teve efeito negativo sobre as propriedades mecânicas dos compósitos. Os compósitos híbridos sisal/pó de madeira com maior teor de fibras, alcançaram 80% do desempenho obtido para os compósitos de fibras de sisal.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Background: The use of all by-products of bovine slaughter is of high economic importance for the industries of products of animal origin. Among these products, fat has an important role, once fat rendering may generate several different products, such as protein material that may be used in the manufacture of meat products. However, in spite of the importance that the use of all by-products has for the economic balance of the industry, there are no reports on their use in Brazil, or studies that supply data on microbiological and physical-chemical local standards for this protein. Thus, the objective of this study was to evaluate microbiological and physical-chemical characteristics of protein material obtained from fat rendering, as well as to provide support for companies to use fat rendering to generate protein material, adding value to industrialized meat products.Materials, Methods & Results: The experimental production of edible protein obtained of fat rendering was conducted in slaughterhouse with supervision of the Brazilian Ministry of Agriculture, Livestock and Food Supply. Protein material was obtained in a continuous, humid heat system at high temperatures. Fat scraps containing protein were ground and cooked at high temperature (85 degrees C), and placed in a three phase decanter centrifuge. After centrifugation, protein material was ground again and packed. Samples were collected from 15 batches of protein material, and the following microbiological analyses were carried out: counts of aerobic mesophilic and psychrotrophic microorganisms, coliforms at 35 degrees C, Escherichia coli, sulfite-reducing Clostridium, and Staphylococcus aureus, besides presence or absence of Salmonella and Listeria monocytogens. The following physical-chemical analyses were also carried out: protein, total lipid, moisture, ash, carbohydrate, and energy content. Mean counts of mesophiles, psychrotrophs, and coliforms at 35 degrees C were 4.17; 3.69 and 1.87 (log CFU/g), respectively. Levels of protein, total lipids, moisture, ashes and carbohydrates were 27.50; 7.83; 63.88%; 0.24%; and 0.55%, respectively, and energy content was 182.63 kcal/100g.Discussion: Results of microbiological analyses demonstrated that, although low, the final product showed to be contaminated. Contamination that occurred during the second grinding procedure may be an explanation for these bacterial counts. Also, the temperature used for fat fusion was not enough to eliminate thermoduric microorganisms. However, even with the presence of indicator microorganisms in the samples, none was contaminated by E. coli, sulfite-reducing Clostridium, S. aureus, Salmonella or L. monocytogenes. Physical-chemical analyses showed that the product had adequate nutritional quality. Based on these results, it was possible to conclude that protein material obtained in fat rendering showed characteristics that enable the use of this product as raw material for processed meat products. Besides, the present study was the first one to present scientific results in relation to edible by-products obtained in fat rendering, supplying important information for slaughterhouses and meat-processing plants. The study also produced relevant data on the innocuousness of the product, which may be used to guide decision-making of health inspectors.
Resumo:
Conveyor belts are widely used in food handling areas, especially in poultry processing plants. Because they are in direct contact with food and it is a requirement of the Brazilian health authority, conveyor belts are required to be continuously cleaned with hot water under pressure. The use of water in this procedure has been questioned based on the hypothesis that water may further disseminate microorganisms but not effectively reduce the organic material on the surface. Moreover, reducing the use of water in processing may contribute to a reduction in costs and emission of effluents. However, no consistent evidence in support of removing water during conveyor belt cleaning has been reported. Therefore, the objective of the present study was to compare the bacterial counts on conveyor belts that were or were not continuously cleaned with hot water under pressure. Superficial samples from conveyor belts (cleaned or not cleaned) were collected at three different times during operation (T1, after the preoperational cleaning [5 a.m.]; T2, after the first work shift [4 p.m.]; and T3, after the second work shift [1:30 a.m.]) in a poultry meat processing facility, and the samples were subjected to mesophilic and enterobacterial counts. For Enterobacteriaceae, no significant differences were observed between the conveyor belts, independent of the time of sampling or the cleaning process. No significant differences were observed between the counts of mesophilic bacteria at the distinct times of sampling on the conveyor belt that had not been subjected to continuous cleaning with water at 45 degrees C. When comparing similar periods of sampling, no significant differences were observed between the mesophilic counts obtained from the conveyor belts that were or were not subjected to continuous cleaning with water at 45 degrees C. Continuous cleaning with water did not significantly reduce microorganism counts, suggesting the possibility of discarding this procedure in chicken processing.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Starch isolated from non-edible Aesculus hippocastanum seeds was characterized and used for preparing starch-based materials. The apparent amylose content of the isolated starch was 33.1%. The size of starch granules ranged from 0.7 to 35 pm, and correlated with the shape of granules (spherical, oval and irregular). The chain length distribution profile of amylopectin showed two peaks, at polymerization degree (DP) of 12 and 41-43. Around 53% of branch unit chains had DP in the range of 11-20. A. hippocastanum starch displayed a typical C-type pattern and the maximum decomposition temperature was 317 degrees C.Thermoplastic starch (TPS) prepared from A. hippocastanum with glycerol and processed by melt blending exhibited adequate mechanical and thermal properties. In contrast, plasticized TPS with glycerol:malic acid (1:1) showed lower thermal stability and a pasty and sticky behavior, indicating that malic acid accelerates degradation of starch during processing. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The main objective of this research work was to obtain two formulations of ablative composites. These composites are also known as ablative structural composites, for applications in atmospherically severe conditions according to the high-temperature, hot gaseous products flow generated from the burning of solid propellants. The formulations were manufactured with phenolic resin reinforced with chopped carbon fiber. The composites were obtained by the hot compression molding technique. Another purpose of this work was to conduct the physical and chemical characterization of the matrix, the reinforcements and the composites. After the characterization, a nozzle divergent of each formulation was manufactured and its performance was evaluated through the rocket motor static firing test. According to the results found in this work, it was possible to observe through the characterization of the raw materials that phenolic resins showed peculiarities in their properties that differentiate one from the other, but did not exhibit significant differences in performance as a composite material for use in ablation conditions. Both composites showed good performance for use in thermal protection, confirmed by firing static tests (rocket motor). Composites made with phenolic resin and chopped carbon fiber showed that it is a material with excellent resistance to ablation process. This composite can be used to produce nozzle parts with complex geometry or shapes and low manufacturing cost.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Engenharia e Ciência de Alimentos - IBILCE
Resumo:
The jucara's palm (Euterpe edulis), native to the Atlantic Forest is one of the palms most exploited for the removal of heart palm and the tree was removed in large areas. The aim of this study was to examine the feasibility of the methodology of "minimally processed" in jucara's palm. The raw material was obtained by COOPERAGUA, Sete Barras (SP) through a Sustainable Management Plan culminating in a permit issued by IBAMA, Forestry Foundation and DPRN. The process began with the withdrawal of external sheaths and cut, with subsequent immersion in a solution of sodium metabisulphite (Na2S2O5 - 200 ppm), sanitize with a chlorine solution and soak in brine acidified to wait until the filling. The cuttings were placed in polyethylene bags containing acidified solution at concentrations A 0.225%, B 0.375%, C 0.6%, D 0.825% determined by titration curve. The staining became clearer in treatments C and D, due to more acidity, resulting in higher inactivation of enzymes. Even with these positive results, were concluded that minimal processing of jucara is not effective due to the blackout, preventing its commercialization. To stop it requires the bleaching step, which does not characterize it as minimally processed.
Resumo:
This study reports on the influence of heat and hydrogen peroxide combination on the inactivation kinetics of two heat resistant molds: Neosartorya fischeri and Paecilomyces variotii. Spores of different ages (1 and 4 months) of these molds were prepared and D-values (the time required at certain temperature/hydrogen peroxide combination to inactivate 90% of the mold ascospores) were determined using thermal death tubes. D-values found for P. variotii ranged from 1.2 to 25.1 s after exposure to different combinations of heat (40 or 60 degrees C) and hydrogen peroxide (35 or 40% w/w) while for N. fischeri they varied from 2.7 to 14.3 s after exposure to the same hydrogen peroxide concentrations and higher temperatures (60 or 70 degrees C). The influence of temperature and hydrogen peroxide concentration on the d-values varied with the genus of mold and their ages. A synergistic effect of heat and hydrogen peroxide in reducing D-values of Paecilomyces variotti and N. fischeri has been observed. In addition to strict control of temperature, time and hydrogen concentration, hygienic storage and handling of laminated paperboard material must be considered to reduce the probability of package's contamination. All these measures together will ensure package's sterility that is imperative for the effectiveness of aseptic processing and consequently to ensure the microbiological stability of processed foods during shelf-life. (C) 2011 Elsevier Ltd. All rights reserved.